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C O M P U T E R  S C I E N C E

100,000-spin coherent Ising machine
Toshimori Honjo1*, Tomohiro Sonobe2, Kensuke Inaba1, Takahiro Inagaki1, Takuya Ikuta1, 
Yasuhiro Yamada1, Takushi Kazama3, Koji Enbutsu3, Takeshi Umeki3, Ryoichi Kasahara3,  
Ken-ichi Kawarabayashi2, Hiroki Takesue1*

Computers based on physical systems are increasingly anticipated to overcome the impending limitations on 
digital computer performance. One such computer is a coherent Ising machine (CIM) for solving combinatorial 
optimization problems. Here, we report a CIM with 100,512 degenerate optical parametric oscillator pulses working 
as the Ising spins. We show that the CIM delivers fine solutions to maximum cut problems of 100,000-node graphs 
drastically faster than standard simulated annealing. Moreover, the CIM, when operated near the phase transition 
point, provides some extremely good solutions and a very broad distribution. This characteristic will be useful for 
applications that require fast random sampling such as machine learning.

INTRODUCTION
With the apparent saturation of the progress in digital computers, 
new types of computers based on nonsilicon physical systems are 
highly anticipated. Unlike current digital computers based on 
Turing machine procedures, these computers use time evolution of 
physical systems to perform tasks such as speech and image recog-
nition, data mining, and optimization (1). On the basis of a computing 
paradigm of “let physics do computation,” they include quantum 
computers (2), quantum annealers (3), neural networks (4), and 
reservoir computers (5), implemented with various physical systems 
such as superconducting qubits (6, 7), trapped ions (8), and photonics 
(9–12). One such computer based on experimental physics that is 
drawing attention to solve combinatorial optimization problem is 
the coherent Ising machine (CIM), which uses networks of coherent 
optical oscillators to simulate the Ising model (13–25). The use of 
optical oscillators, whose photon energy is much larger than that of 
thermal noises in the environment, enables us to realize a physical 
system to simulate the behavior of low-temperature spins at room 
temperature. Here, we report a CIM with 100,512 degenerate 
optical parametric oscillator (DOPO) pulses as an artificial spin 
network with more than 10 billion spin-spin interactions. In this 
machine, temporally multiplexed DOPO pulses, born in a non-
linear optical waveguide as squeezed vacuum pulses, circulate in a 
5-km fiber cavity, while experiencing digitally assisted mutual inter-
action and nonlinear amplitude evolution, to search for the lower 
energy state of the Ising model through the collective phase transi-
tion of the 100,000 DOPO pulses. We show that the CIM can deliver 
fine solutions to maximum cut (MAX CUT) problems of fully 
connected 100,000-node graphs ∼1000 times faster than those 
obtained with a cutting-edge digital computer, which suggests that 
the CIM will have an advantage in solving combinatorial optimiza-
tion problems.

Two fundamentally important and often conflicting aspects of 
solving complex problems are accuracy and computation time. In 
particular, solving large-scale combinatorial optimization problems 
for which exact solutions are not generally known requires that a 

solution be obtained with a certain accuracy in a limited time. On a 
practical level, examples of these problems are channel allocation in 
a mobile communications network (26) and object detection in a 
self-driving car. Many of these tasks are classified as combinatorial 
optimization. It is known that various types of these problems can 
be converted to ground-state search problems of the Ising model 
(27) with polynomial resources (28, 29). Recently, many physical 
systems have been constructed to solve Ising problems in a very 
short time, including superconducting qubits (6), complementary 
metal-oxide semiconductor devices (30), trapped ions (31), and 
nanomagnets (32). The CIM, one such “Ising machine,” uses 
DOPOs to represent the Ising spins. A degenerate parametric oscillator 
is known to be a physical system that undergoes a second-order 
phase transition (33) and has been investigated as a logic element 
for computers owing to its bistable characteristics (34). For physical- 
system computers, scalability is fundamentally important in obtain-
ing nontrivial evidence of the effectiveness of such computation; 
however, many of them often fail to scale up because of the difficulty 
in controlling physical systems. In 2016, our group showed that a 
CIM could find solutions to a MAX CUT problem of a fully 
connected 2000-node graph faster than simulated annealing (SA) 
implemented on a CPU (central processing unit) by a factor of ∼50. 
Here, we report a 100,000-spin CIM, which we believe is the largest 
physical-system computer ever constructed. Through experiments 
using the CIM, we provide clear evidence of the CIM’s advantage 
over SA implemented on a cutting-edge CPU in solving problems, 
which shows the possibility of applying it to combinatorial optimi-
zation problems.

RESULTS
Comparison of computation time
The Ising model is a theoretical model describing the behavior of 
interacting spins. The Hamiltonian of the Ising model is expressed as

  H = −  ∑ 
ij
      J  ij    σ  i    σ  j    (1)

where i = {−1,1} and Jij denote the value of the ith spin and a 
coupling coefficient between the ith and jth spins, respectively. The 
purpose of the Ising machine is to obtain the spin set i to minimize 
this Hamiltonian for a given Jij. For benchmarking the CIM, we 
used the MAX CUT problem, which is a graph-partitioning 
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problem and is known to be a nondeterministic polynomial time–
hard combinatorial optimization one. Solving MAX CUT problems 
is mathematically equivalent to finding the lowest energy state of 
the Ising model without a magnetic field (details are described in 
section S6).

First, we compared the computational time of the CIM with that 
of a current digital computer. For this purpose, we sought a solution 
to a fully connected 100,000-node graph with 9,999,900,000 
undirected edges, which is randomly weighted by {−1, +1}. We 
generated an instance, which we denote by K100000 hereafter, 
using a well-known graph generator called Rudy (35), whose details 
are described in section S7.

Because obtaining a solution that can be proved to be the exact 
solution of this huge problem is impossible in reality, we investigated 
how to obtain a normative reference score that can be used as a 
standard for a fine approximate solution. In our previous report 
(18), we used Goemans-Williamson semidefinite programming 
(GW-SDP) (36), which is a relaxation algorithm that theoretically 
guarantees the solution accuracy. However, a 100,000-node graph is 
too large to run on GW-SDP because of the long computational 
time that scales in ∼O(N3). Therefore, we applied a greedy heuristic 
algorithm called Sahni-Gonzales (SG), which is known to find 
approximate solutions to large problems in polynomial time (37). 
Although SG does not guarantee the accuracy of the solution, 
Okuyama et al. have shown that its performance is comparable to 

that of GW-SDP for large problems (38). With SG, which is a deter-
ministic algorithm, we obtained the MAX CUT score of 10,759,955 
for K100000. We use this value as the reference score.

We ran MAX CUT of K100000 on the CIM and a digital 
computer and measured their times to reach the reference score. 
The pump turn-on schedule of the CIM (schedule 1 in Fig. 1B) was 
designed to minimize the time to reach the reference score. The 
amplitudes of the 100,000 DOPO pulses were recorded by the field- 
programmable gate array (FPGA) system every two circulations in 
the fiber cavity. The measured amplitude data were transferred to a 
computer where the score at each circulation was calculated. To 
evaluate the computation time of the digital computer, we used SA 
as an algorithm to solve the MAX CUT problems, because it is a 
general-purpose heuristic algorithm that can be applied to various 
combinatorial optimization problems and can be straightforwardly 
scaled up to 100,000-node graphs (39). It is known that there are 
many varieties of modified SA algorithms, each with their pros and 
cons. In this work, we used the standard SA algorithm, which is 
widely recognized as a reference algorithm, implemented on a CPU 
(Intel Core i9-9900K, 3.60 GHz with 64-gigabyte random-access 
memory). The SA schedule was also adjusted to minimize the time 
to reach the reference score (details are described in section S10). 
Figure 2 shows the temporal amplitude evolution of DOPOs ob-
served when we run MAX CUT of K100000, which is an example 
of the best results obtained when the CIM ran stably. Here, the 
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Fig. 1. CIM setup and pump turn-on schedules. (A) Experimental setup. The FPGA system includes 56 FPGAs in total (details are explained in section S5). ADC, analog- to-
digital converter; BHD, balanced homodyne detector; BPF, band pass filter; DAC, digital-to-analog converter; FS, fiber stretcher; FPGA, field-programmable gate array; 
LO, local oscillator; PMF, polarization-maintaining fiber; PSA, phase-sensitive amplifier. (B) Schedules of the normalized pump amplitude. Schedule 1, pump turn-on 
schedule designed to minimize the time to reach the reference score; schedules 2 and 3, those for obtaining high scores.
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amplitudes of the first 100 of 100,000 DOPO pulses are plotted. 
The DOPO pulse amplitudes started to grow from noises after the 
pump was turned on until they saturated at ∼100 circulations. The 
DOPOs exhibited complex dynamics in the first ∼20 circulations 
(see inset of Fig. 2), and then the frequency of sign flips decreased 
substantially, implying that the search for solutions with lower 
energy (or higher cut) was mostly undertaken in the first several 
tens of circulations.

Figure 3 shows the temporal evolution of the cut obtained from 
the data shown in Fig. 2. The cut rapidly increased at first and then 
showed saturation, as expected from the trajectory data. The CIM 
used only 24 circulations to reach the reference score, which corre-
sponds to 593 s. This result agrees well with a numerical simulation 
based on c-number stochastic differential equations (CSDEs) with 
the truncated Wigner approach (see section S8) (40). On the other 
hand, it took 0.698 s for SA to reach the same score, which means 
that the CIM delivered a solution with the same accuracy ∼1000 
times faster than SA on a cutting-edge CPU, at least for this partic-
ular problem instance.

Scaling in problem size and dependence of edge density
Next, we studied the scaling of the computation time of the CIM 
and SA on the CPU. We used MAX CUT of complete graphs with 
sizes of 1000, 10,000, 50,000, and 100,000, which were generated 
again by Rudy. We ran them on the CIM and SA on the CPU and 
estimated the average times to reach the reference scores obtained 
by SG. Again, we used a pump turn-on schedule and an annealing 
schedule designed to minimize the time to reach the SG score 
(Fig. 1B, schedule 1). For graphs smaller than 100,000, the present 
100,512-spin CIM can embed the same graph multiple times in 
each run. Therefore, the calculation time was estimated by dividing 
the time to reach the reference score by the number of embeddings. 
Note that we can experimentally realize the estimated computation 
time for the smaller graph by optimizing cavity length. In this way, 
we took account of the problem size dependence of the optimization 
of the cavity round-trip time, so that we could avoid overestimating 

the computation times for smaller graphs. Despite various efforts to 
stabilize the 5-km fiber cavity (see section S3), the effect of residual 
instability was still obvious in the measurement of time to reach a 
reference score. In this measurement, the number of circulations 
where the DOPO started to rise often fluctuated because of experi-
mental noise in the optical setup, which significantly increased the 
fluctuation of the computation time more than expected from 
numerical simulations (see section S8). To evaluate the potential 
of the CIM, we ran it 500 times and took the average of the top 10 
results for each graph. On the other hand, the variance of the cal-
culation time of SA was very small, so we ran SA 10 times and aver-
aged the result.

Figure 4 shows the experimental results. The average computa-
tion times of the CIM for 1000- and 100,000-node graphs were 5.43 
and 785 s, respectively, while those of SA were 0.294 and 725.0 ms, 
which confirm that the difference between the CIM and SA became 
larger as graph size increased. Figure 4 shows the effective time to 
reach the SG score as a function of graph size. The result indicates 
that the computation time of the CIM increased almost linearly, 
while the scaling of SA became nearly quadratic at graph sizes larger 
than 10,000. These observations clearly demonstrate that as the 
node size of the problem increases, the performance gap between 
the CIM and SA on a CPU widens in terms of computation time. 
The linear increase of the CIM computation time shown in Fig. 4 
means that the number of circulations to reach the reference score 
was almost constant for all the graph sizes up to 100,000. At present, 
we cannot deny that the possibility that the CIM operational condi-
tions, such as the pump turn-on schedule and intensity, were not 
completely optimized, especially for small graphs, which would result 
in a larger number of circulations required for smaller graphs than 

Fig. 2. Amplitude evolution of the first 100 of 100,000 DOPO pulses when run-
ning MAX CUT problem of K100000. The unit of the vertical axis is the output of 
the digital-to-analog converter that digitized the amplitude of the signal from the 
balanced homodyne detector, where 14 bits (16,384) corresponds to 0.25 V.

Fig. 3. MAX CUT score as a function of computation time obtained with the 
CIM (orange line) and SA (blue line). The data points exhibit the scores evaluated 
at the intermediate steps in the CIM and SA computation. The dotted line denotes 
the score obtained with SG (10,759,955).
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necessary. Nevertheless, numerical simulations of computations 
based on oscillator networks also exhibited results similar to those 
in our experiment (40, 41).

The scaling of SA observed in Fig.  4 can be qualitatively 
explained as follows. The total number of steps of our SA is basically 
determined by the number of edges because all the adjacent edges 
are evaluated for every flip. Thus, the number of steps can be 
quadratic to the graph size. However, because of other overhead, 
the calculation time itself is not simply proportional to the number 
of steps. As one can see in Fig. 4, the data for the 1000- and 10,000-node 
graphs do not fit well on the quadratic auxiliary line. This is be-
cause the overhead of calculating the temperature  and the energy 
difference E on every loop is not negligible, especially for smaller  
graphs.

We note here that the present result does not promise similar 
scaling for higher problem sizes, because of the limited number of 
experimental data and graph instances used for benchmarking. In 
addition, a more detailed scaling analysis using time-to-solution for 
problems with known exact solutions, such as the ones reported in 
(42), will be important future work.

In addition to the scaling of problem size, we also studied the 
computation time of the CIM for graphs with various densities. We 
generated 100,000-node graphs with densities of 1, 10, 50, and 100% 
(details are described in section S7). We ran these graphs on the 
CIM and estimated the average times to reach the SG scores. For 
each graph, we operated the CIM 500 times and selected the 10 best 
scores. Figure 5 shows the experimental results. We observed 
that the time to reach the SG score was almost the same for all 
graph densities, which suggests that the CIM computation time 

to obtain approximate solutions is not dependent on the densities 
of graphs.

Comparison of solution accuracy
Last, we compared the accuracy of the solutions delivered by the 
CIM and SA, again using MAX CUT of a K100000 graph. In our 
experiment to compare computation time, we minimized the time 
to reach the reference score, whereas, here, we operated the CIM so 
that it could deliver higher cuts (or lower energy). We increased 
the number of circulations to 900, during which the pump was 
increased more slowly than in the experiments described above. We 
used two pump turn-on schedules, schedules 2 and 3 shown in 
Fig. 1B. Schedule 2 provides a relatively steep increase in the pump 
amplitude, while schedule 3 provides a slower increase in its ampli-
tude, with the aim of operating the CIM closer to the oscillation 
threshold. The DOPO phases were read out at the 890th circulation, 
which means that the computation time was 22.0 ms. We performed 
512 sequential CIM computations, which took 12.6 s in total. To 
eliminate results where the phases of the injection pulses were 
inverted, we applied a phase check filter to the data. To eliminate 
the results where erasure of the phase information from the previous 
run was incomplete, we also removed the data whose phase configu-
ration exhibited >10% correlation with the previous data (for details 
of data filtering, see section S9). As a result of the data filtering, we 
obtained 368 and 231 computation results of 512 for schedules 2 
and 3, respectively. To compare the results with the same number of 
data, we took the first 231 of schedule 2 data. On the other hand, 
22 ms is too short for SA to find a solution on the CPU—even the 
initial energy calculation will not finish within this time. Therefore, 
we ran SA 231 times with two different computation times, 500 and 
1000 ms. The SA schedule was also optimized to obtain higher 
scores rather than shorter computation time, as described in section 
S10. Figure 6 shows the histograms of the scores obtained by the 
CIM and SA, and the scores are summarized in Table 1. The blue 
and orange columns in Fig. 6 correspond to the results obtained 
with schedules 2 and 3, respectively. It is apparent that both results 
with the CIM had peaks in the histogram at larger scores than SA 
for 1000 ms. In particular, the best and average scores of the CIM 
with schedule 2 were 11,592,712 and 11,045,206, respectively, 
both of which are significantly better than those obtained with 
SA with a computation time ∼45 times longer than that of the 
CIM. Here, note that when we extended the computation time to 
as long as 1200 s, SA reached a score of 12,032,926, which clearly 
exceeded that of the CIM. This suggests that, in an application 
where the allowable calculation time is limited (to ∼1 s in MAX 
CUT of K100000), the CIM has great potential to overwhelm SA in 
terms of not only computation speed but also solution accuracy. 
On the other hand, SA still has an advantage in obtaining a better 
solution if enough computation time is given.

Figure 6 also suggests that the characteristics of the computa-
tional results significantly depend on the pump turn-on schedules. 
It is apparent that schedule 3 provided a broader score distribution 
than schedule 2. In addition, the best score was obtained with 
schedule 3. On the other hand, SA recorded better scores with a 
narrower distribution, which is a typical result obtained with 
optimization algorithms governed by thermal fluctuations. Although 
the pump parameter was adiabatically changed with schedule 3 
(with a slower pump increase), we observed both a significantly 
broad score distribution, as shown in Fig. 6, and large fluctuations 

Fig. 4. Effective time to reach the SG score for various graph sizes. The orange 
(blue) circles show the computation time of the CIM (SA), and the orange (blue) 
dashed lines are linear (quadratic) auxiliary lines. To estimate the time of CIM, we 
took the average of the top 10 results of 500 runs.
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of DOPO amplitudes, which are detailed in section S9. The 
broad distribution was probably obtained because the CIM is 
operated close to the DOPO phase transition point for a long time 
with the slower pump turn-on schedule, where amplitude fluctu-
ations are strongly enhanced by the collective phase transition of 
the 100,000 DOPOs. Our hypothesis is that the best score was 
obtained as a result of critical phenomena observed in a phase tran-
sition, such as an elongated correlation length, which may have 
helped in the search for lower energy states. A broad score distribu-
tion with a good best score will be useful for applications that re-
quire fast random sampling such as machine learning. We consider 
that it is hard to reproduce these characteristic distributions ob-
tained near the phase transition for general problem instances with 
simple numerical simulations using CSDE based on the truncated 
Wigner approach (40).

A natural question is whether we can simulate the CIM operated 
around the transition point using a more elaborate model. Some of 
the authors of the present paper are now investigating the solution 
distribution of the CIM at the transition point using a dissipative 
quantum model of the CIM dynamics, namely, the Lindblad master 
equation, derived from a theoretical analysis of the measurement- 

feedback (MFB) couplings and squeezing with two-body loss on 
DOPOs. Although there will be no entanglement between DOPOs, 
this numerical simulation that takes account of factors such as local 
quantum effects and quantum noises and is resource hungry be-
cause of the many-body effects. Therefore, it is hard to simulate 
large-scale Ising problems with as many as 100,000 spins with the 
current computational resource available to our team. Nevertheless, 
they observed a characteristic distribution with simulations based 
on this model with 10 to 40 spins, which was recently reported 
in (43). At slightly below the transition point, where a random 
distribution was obtained (as intuitively expected) with the sim-
ple CSDE reported in (40), this study indicates that the nonclas-
sical fluctuations due to the squeezing and the partial measurement 
and the feedback process cause a significant broadening in the dis-
tribution with a decrease in the mean energy. We hope that the de-
tails of the numerical simulations will be published elsewhere in 
the future.

DISCUSSION
A theoretical paper on an XY Hamiltonian simulator on laser 
network (44) has shown that the probability of obtaining the ground 
state increases significantly with an adiabatic gain increase. As we 
described in the preceding section, the CIM result with the adiabatic 
pump increase exhibited characteristics that are not expected from 
adiabaticity (the best score was obtained but with a much broader 
score distribution than those obtained with a steeper pump turn-on 
schedule), which may be attributed to the behavior at the DOPO 
critical point, as we discussed above. Further investigating the 
relationship among adiabaticity, criticality, and energy distribution 
would be interesting future work.

Whether the dynamical model of a DOPO network can be 
simulated on the FPGA system is an intriguing question. We expect 
that the simple truncated Wigner–based CSDEs that we mentioned 
in the previous section could be implemented on the FPGA system 
with some additional resources, although the DOPOs’ characteris-
tic behavior at around the phase transition point would be hard to 
simulate with such an implementation.

In the CIM, the time for one computational step, or the time for 
one circulation in the cavity, increases in proportion to problem 
size N. On the other hand, although FPGA resources for the matrix 
computation scale in O(N2), the time for such a task can scale 
linearly to the problem size by parallelization, as we have demon-
strated with the present FPGA system. Therefore, we believe that 
the ultimate bottleneck for the computation time results from the 
time-multiplexing technique used in the generation of DOPO pulses, 
not from the matrix computation time in an FPGA system. However, 
in reality, the size and power consumption of an FPGA system will 
scale in O(N2), which may practically limit the scalability of the CIM 
as a computation system.

Recently, inspired by optimization machines based on experi-
mental physics such as quantum annealers and CIMs, researchers 
have proposed various optimization algorithms and implemented 
them on digital hardware. These algorithms include those influ-
enced by SA and quantum annealing (38, 45), ones based on the 
simulation of a classical model of a quantum bifurcation machine 

Fig. 5. Time to reach the SG score for 100,000-node graphs with various 
densities. To estimate the time of CIM, we took the average of the top 10 results 
of 500 runs. Fig. 6. Histograms of MAX CUT score with CIM and SA. The vertical dashed line 

shows the SG score (10,759,955).
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(46, 47), and ones based on the modification of stochastic differen-
tial equations for describing CIM behavior (48, 49). Some of these 
“digital Ising machines” have been used to find solutions to 100,000-
node class MAX CUT problems. Okuyama et al. (38) proposed a 
new algorithm called momentum annealing, which allows us to si-
multaneously update all spins of fully connected Ising models, and 
is suitable for parallel implementation on GPUs (graphic process-
ing units). They solved a fully connected 100,000-node graph with a 
10-bit weight resolution with four GPUs and showed that the time 
to reach the SG score was 0.16 s. Goto et al. (46) proposed a new 
optimization algorithm simulating adiabatic evolutions of classical 
nonlinear Hamiltonian systems exhibiting bifurcation phenomena, 
called simulated bifurcation (SB). They solved a fully connected 
100,000-node graph with continuous weight set randomly from −1 
to +1. They demonstrated that SB on a GPU-cluster (eight GPUs) 
reached the score obtained by their Hopfield neural network imple-
mentation about 10 times faster than their SA on a PC cluster did. 
More recently, the same team proposed a modified SB algorithm 
(47), with which a fully connected 100,000-node graph with 10-bit 
weight resolution was solved. They showed that it can improve the 
solution accuracy and calculation time compared with the previous 
SB algorithm (46). On another front, various optical Ising machines 
have also been reported, ranging from large-scale machines based 
on spatial light modulation with 40,000 spins (22) and an opt-electric 
feedback system with 100 spins (23) to small-scale ones using injection- 
locked multicore fiber lasers (24) and integrated DOPOs realized 
with silicon ring cavities (25). It is expected that those digital Ising 
machines will become practical measures for solving optimization 
problems in the near future because of their stability, reliability, and 
low cost compared with nonsilicon physical systems. On the other 
hand, exploiting analog and nonlinear nature of light may bring 
new features to computation that are difficult to obtain with digital 
hardware. Clarifying the advantages and disadvantages of those 
digital and optical Ising machines, including the CIM, will be 
important future work for the community.

Although the current CIM still lacks stability and precise con-
trollability of physical parameters, it exhibited promising performance. 
Moreover, the rich dynamics of coupled optical oscillators in a 
nonlinear optical medium, as well as the high–signal-to-noise ratio 
analog computation enabled by high-frequency oscillators realized 
by optics, are, in principle, hard to simulate with digital hardware. 
With continuous effort to enable better control of the physical 
parameters in our system, we believe that the CIM will be the ultimate 
choice in future computation.

Similar to a laser, our networked DOPO is an open dissipative 
system, and the simple empirical fact that the mode with the lowest 

loss is likely to survive in such a system is at the heart of CIM 
computation. On the other hand, the origin, potential, and limita-
tion of the CIM’s computational power have not been clarified yet. 
The CIM is a physical system with various aspects in that it can be 
an analog (48), a nonlinear (50), or an open dissipative system that 
exhibits nonclassical characteristics (51–53). We are especially 
interested in understanding the dynamics of the DOPO network at 
the oscillation threshold (or critical point), where we experimentally 
observed interesting score distributions as described above. Clarifying 
the role of those aspects in the CIM will provide a clue to under-
standing phase transition phenomena as a resource for future 
computation.

MATERIALS AND METHODS
CIM with MFB
In our CIM, a DOPO is used to represent the Ising spin. A DOPO is 
an optical oscillator that uses a phase-sensitive amplifier (PSA) as a 
gain medium for oscillation. A PSA is realized through a process 
called signal-idler degenerate optical parametric amplification. In 
this process, when we input a pump and a signal light into a medium 
with second- or third-order optical nonlinearity, one quadrature 
phase component relative to the pump phase is amplified, while the 
other quadrature component is deamplified. As we increase the 
pump to the PSA, the system undergoes spontaneous symmetry 
breaking and then starts to oscillate with either phase 0 or  relative 
to the pump phase, where the PSA gain becomes maximum. By 
allocating the phase 0 () as a spin-up (spin-down) state, we can 
stably implement a spin-like system with intrinsic randomness 
using a high-frequency (∼200 THz in our system) optical oscillator. 
To realize a large-scale CIM, we used time-multiplexed DOPO 
pulses (16) generated in a long fiber cavity (17). A schematic of the 
CIM is shown in Fig. 1A. A PSA based on a periodically poled lithium 
niobate waveguide (54) is placed in the fiber cavity, which also 
contains an optical bandpass filter, two 90:10 optical couplers, a 
5-km polarization-maintaining fiber spool, and a piezo-based fiber 
stretcher for stabilizing the cavity phase. The cavity round-trip time 
is 24.7 s. We input a 779.5-nm pump pulse train at a repetition 
frequency of 5 GHz into the PSA and, as a result, generate 123,572 
time-multiplexed DOPO pulses at the wavelength of 1559.0 nm. A 
portion of the DOPO pulse energies is split from coupler 1 so that 
we can measure the quadrature amplitude of the DOPO pulses for 
each circulation using a balanced homodyne detector (BHD). Among 
the DOPO pulses, 100,512 pulses are used for the Ising model 
computation (which we refer to as signal pulses hereafter), while 
22,860 pulses are kept oscillating so that we can use them to stabilize 
the fiber cavity (training pulses), and 100 vacant slots are inserted 
between the signal and training pulse groups.

We use an MFB scheme (18, 19) to implement flexible inter-
actions among the DOPO pulses. In this scheme, the quadrature 
amplitude measurement results for the 100,512 signal pulses are 
input into an FPGA system, which contains 56 FPGAs, an analog- 
to-digital converter, and a digital-to-analog converter (details are 
described in section S5). Jij, a 100,512-by-100,512 matrix, for a 
given Ising model problem is uploaded to the FPGA system in 
advance. Here, the values of the Jij elements were limited to {−1,0,1} 
in the present experiment. The FPGA system performs matrix 
calculation   r  i   =  ∑ j      J  ij      ~ c    j   , where     ~ c    j    denotes the BHD measurement 
result for the jth pulse. We then modulate an optical pulse whose 

Table 1. Best and mean MAX CUT scores for CIM (schedules 2 and 3, 
both 21.9 ms), SA (1000 ms), SA (500 ms), and SG.  

Best Mean

CIM (schedule 2) 11,592,712 11,045,206

CIM (schedule 3) 11,760,078 7,386,632

SA (1000 ms) 11,053,888 11,009,735

SA (500 ms) 10,486,033 10,425,183

SG 10,759,955 10,759,955
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wavelength is set to exactly the same as that of the DOPO pulses by 
using a feedback signal fi = ari, where a is a constant to determine 
the coupling strength adjusted by an internal gain parameter in the 
FPGA system and the amplitude of the pulse. The pulse that carries 
the feedback signal fi is input into the ith DOPO pulse through cou-
pler 2 to complete the spin-spin interaction. As a result, we can re-
alize an Ising machine that can simulate 100,512 fully connectable 
Ising spins, where the total number of two-body interactions 
amounts to more than 10 billion (10,102,561,632) if we take direc-
tional interactions into account. In the computation of the Ising 
model, we periodically turn the PSA on and off by modulating the 
pump amplitude while performing the MFB. After we turn the PSA 
on by injecting the 779.5-nm pump pulses, the PSA emits squeezed 
vacuum pulses. Those noise pulses circulate in the fiber cavity 
while undergoing synchronous phase- sensitive amplification and 
MFB. As the pulse amplitudes increase, gain saturation in the PSA 
induces competition between the DOPO phase configurations, 
which helps configurations with the lowest loss, which corresponds 
to the approximate ground-state energy, to survive with a high 
probability. We read out the spin value by taking the sign of the 
DOPO pulse amplitudes after amplitude evolution.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abh0952
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