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Abstract. L0-regularization-based compressed sensing (L0-RBCS) has the potential

to outperform L1-regularization-based compressed sensing (L1-RBCS), but the

optimization in L0-RBCS is difficult because it is a combinatorial optimization

problem. To perform optimization in L0-RBCS, we propose a quantum-classical hybrid

system consisting of a quantum machine and a classical digital processor. The coherent

Ising machine (CIM) is a suitable quantum machine for this system because this

optimization problem can only be solved with a densely connected network. To evaluate

the performance of the CIM-classical hybrid system theoretically, a truncated Wigner

stochastic differential equation (W-SDE) is introduced as a model for the network of

degenerate optical parametric oscillators, and macroscopic equations are derived by

applying statistical mechanics to the W-SDE. We show that the system performance

in principle approaches the theoretical limit of compressed sensing and this hybrid

system may exceed the estimation accuracy of L1-RBCS in actual situations, such as

in magnetic resonance imaging data analysis.

1. Introduction

Quantum machines have attracted significant interest because of their potential to

overcome the difficulty of solving large-scale combinatorial optimization problems. Many

quantum machines, such as the quantum annealers (QA) of D-Wave systems [1], the

quantum approximate optimization algorithm (QAOA) [2, 3], quantum bifurcation

machines [4, 5, 6], electromechanical resonators [7] and coherent Ising machines (CIMs)

[8, 9, 10, 11, 12, 13], have been proposed in the past decade. Other examples

include classical annealers, which have been implemented in nanomagnet arrays [14],

http://arxiv.org/abs/2102.11412v5
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electronic oscillators [15], silicon photonic weight banks [15], complementary metal-

oxide-semiconductor static random access memory circuits [16, 17, 18], and field-

programmable gate arrays (FPGAs) [19, 20]. Interest has been centered on implementing

quantum machines and understanding their behavior, whereas there have been few

practical applications [21, 22, 23]. To open the door to practical use of quantum

machines, we show that they can be used for implementing compressed sensing (CS).

Furthermore, we demonstrate, using non-equilibrium statistical mechanics [24], that the

system performance in principle approaches the theoretical limit of CS.

L1-regularization-based CS (L1-RBCS) including the least absolute shrinkage and

selection operator (LASSO) [25] is a very efficient approach to solving various sparse

signal reconstruction problems in exploration geophysics [26, 27, 28, 29], magnetic

resonance imaging (MRI) [30, 31, 32, 33], black hole observation [34], and materials

informatics [35, 36]. L1-RBCS is formulated as:

x = argminx∈RN

(

1

2
‖y − Ax‖22 + λ ‖x‖1

)

, (1)

where x is an N -dimensional source signal, y is an M-dimensional observation signal,

A is an M-by-N observation matrix, and λ is a regularization parameter. Here, the

ratio of the number of non-zero elements in the source signal x to N is defined as the

sparseness a, and the ratio of M to N is defined as the compression ratio α. L1-RBCS

can be formulated as a convex optimization problem, for which many efficient heuristic

algorithms are available [37, 38, 39, 40, 41, 42].

On the other hand, L0-regularization-based CS (L0-RBCS) can be formulated with

the L0 norm instead of the L1 norm [43]:

x = argminx∈RN

(

1

2
‖y − Ax‖22 + λ ‖x‖0

)

. (2)

L0-RBCS, as defined in Eq. (2), can be equivalently reformulated as a two-fold

optimization problem [43, 44]:

(r, σ) = argminσ∈{0,1}N argminr∈RN

(

1

2
‖y − A (σ ◦ r)‖22 + λ ‖σ‖0

)

. (3)

Here, the vector r is the value of the N -dimensional source signal and each element ri in

r represents the real-number value of the i-th element in the source signal. The vector σ

is called a support vector, which represents the places of the non-zero elements in the N -

dimensional source signal. The element σi in σ takes either 0 or 1 to indicate whether

the i-th element in the source signal is zero or non-zero. The symbol ◦ denotes the

Hadamard product. From the elementwise representation of Eq. (3), the Hamiltonian

(or cost function) of L0-RBCS can be written as

H =
1

2

N
∑

i,j=1

M
∑

µ=1

Aµ
i A

µ
j rirjσiσj −

N
∑

i=1

M
∑

µ=1

yµAµ
i riσi + λ

N
∑

i=1

σi, (4)

where Aµ
i is an element in an M-by-N observation matrix A, and yµ is an element in

an M-dimensional observation signal.
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The minimization of H with respect to r under the condition that σ is fixed is the

same as the problem of solving a system of simultaneous linear equations that gives the

minimum point of the quadratic potential for r. On the other hand, the minimization

of H with respect to σ under the condition that r is fixed is the same as the problem of

quadratic unconstrained binary optimization to find the ground state of a Hamiltonian of

the two-state Potts model, where −
∑M

µ=1 A
µ
i A

µ
j rirj can be considered to be the mutual

interaction between σi and σj .

It has been suggested that L0-RBCS has the potential to outperform L1-

RBCS, because L1 regularization imposes a shrinkage on variables over a threshold

(soft-thresholding) but L0 regularization does not impose such a shrinkage (hard-

thresholding) [43]. However, the optimization of the support vector is a combinatorial

optimization problem, which can be mapped into a Potts model , as mentioned above.

In this problem, there are a lot of meta-stable states because the effective interaction

−∑M
µ=1 A

µ
i A

µ
j rirj induces frustration in the Potts model in the minimization of H with

respect to σ under the condition that r is fixed. Thus, it is difficult to solve this

kind of problem. Because of this difficulty, only a few approximation algorithms have

been proposed and they only work under special conditions [45, 46, 47]. Note that

the two-fold optimization problem for L0-RBCS is conceptually similar to Benders’

decomposition [48]. However, Eq. (4) contains a quadratic programming part but does

not contain a linear programing part; thus, our method is not strictly an example of

Benders’ decomposition. Furthermore, because in our method the non-linear part is

a combinatorial optimization problem, our problem cannot not be made easier even if

Benders’ decomposition can be performed.

In this paper, to overcome the difficulty of optimizing the support vector σ, we

focus on quantum machines. We propose a quantum-classical hybrid system composed

of a quantum machine and a classical digital processor (CDP) (Fig. 1). This system

solves the two-fold optimization problem by alternately performing two minimization

processes; (i) the quantum machine optimizes σ to minimize H under the condition that

r is fixed, and (ii) the CDP optimizes r to minimize H under the condition that σ is

fixed. If the quantum machine can find the ground state of H under the condition that

r is fixed, the quantum-classical hybrid system is expected to outperform L1-RBCS.

Several quantum machines can potentially be used for optimizing σ, such as QA [1],

QAOA [2, 3], CIM [8, 9, 10, 11, 12, 13], and so on. As defined in Eq. (4), the number of

non-zero connections is O(N2); thus, it is necessary to form a densely connected network

on a quantum machine in order to optimize σ. A comparison of these candidates

reveals that a measurement-feedback (MFB) CIM is one of most suitable machines

for this purpose. In fact, an MFB-CIM can construct any densely connected network

composed of degenerate optical parametric oscillators (OPOs) because it uses a time-

division multiplexing scheme and MFB [10, 11]. In contrast, QA and almost all other

machines can only support local graphs, including chimera graphs, and thus, a densely-

connected network for optimizing σ has to be embedded in a fixed hardware local graph

by using the minor-embedding scheme, which requires additional physical spins [49, 50].
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Furthermore, it was reported [51] that an MFB-CIM experimentally outperformed QA

on two problem sets, i.e., a fully connected Sherrington-Kirkpatrick model [52] and

dense graph MAX-CUT. In contrast to QA having an exponential computation time

proportional to exp (O (N)) , a CIM has an exponential computational time proportional

to exp
(

O
(√

N
))

, where N is the problem size [51].

Here, we evaluate the performance of a quantum-classical hybrid system composed

of an MFB-CIM and CDP (Fig. 2). We introduce a truncated Wigner stochastic

differential equation (W-SDE) as a model for the network consisting of OPOs. Then, we

develop a statistical mechanics method based on self-consistent signal-to-noise analysis

(SCSNA) [53, 24, 54] and derive a macroscopic equation (ME) for the whole system

[55, 56, 57]. Several research groups have derived a critical condition for perfectly

reconstructing x in Lp minimization-based CS (minimize ||x||p s.t. y = Ax) when each

entry of A is an independently and identically distributed (i.i.d.) zero-mean Gaussian

random number in the thermodynamic limit N , M → ∞ with the compression rate

α = M/N kept fixed [58, 59, 60, 44]. A threshold for the sparseness a and the

compression rate α, called the weak threshold, determining whether or not the problem

of L1-norm minimization has a solution with no error, was derived using techniques of

combinatorial geometry [58]. On the other hand, the typical criticality of CS based on

the general Lp norm was explored, and thresholds for p = 0, 1, 2, determining whether or

not the problem of Lp-norm minimization has a solution with no error, were derived using

statistical mechanics [59]. Note that the weak threshold derived with combinatorial

geometry is perfectly consistent with the threshold for p = 1 derived with statistical

mechanics in the thermodynamic limit [59, 60]. The role of the MEs derived here is

mainly to show whether the theoretical performance limit of our model is comparable

to the thresholds of L0/L1 minimization-based CS when the regularization parameter λ

is sufficiently small. We show that the performance of the hybrid system approaches the

theoretical limit of L0-minimization-based CS [44] and the hybrid system may exceed

the estimation accuracy of L1-RBCS in actual situations, such as MRI data analysis.

2. Methods

2.1. Configuration of CIM-CDP hybrid system

The CIM-CDP hybrid system (Fig. 2) executes the L0-RBCS defined as Eqs. (3) and

(4). This system optimizes by alternately performing the following two minimization

processes. The CIM optimizes σ to minimize H under the condition that r is fixed and

forwards σ to the CDP. The CDP then optimizes r to minimize H under the condition

that σ is fixed and then forwards r to the CIM.

At a stationary point r and σ that satisfy ∂H
∂σi

= 0 and ∂H
∂ri

= 0, the following

equations hold (see Appendix A) :

σi = H (rihi − λ) , (5)
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ri

Quantum Machine 

for Support Estimation 

Classical Digital 
Processor 

for Signal Estimation 

a b

Quantum

σi

Figure 1. Quantum-classical hybrid system for L0-RBCS. To estimate the N -

dimensional support vector σ and N -dimensional signal vector r, this system solves a

two-fold optimization problem by alternately performing two minimization processes;

a the quantum machine optimizes σ to minimize H with the given r, and b the classical

digital processor optimizes r to minimize H with the given σ.

ri

M
∑

µ=1

(Aµ
i )

2 = σihi, (i = 1, · · · , N) (6)

hi = −
N
∑

j=1(6=i)

M
∑

µ=1

Aµ
i A

µ
j σjrj +

M
∑

µ=1

Aµ
i y

µ, (7)

where hi is the local field and H(X) is the Heaviside step function taking 0 for X ≤ 0

or +1 for X > 0. λ can be considered as the threshold.

In this paper, we assume that
∑M

µ=1 (A
µ
i )

2 = 1 is satisfied. This assumption does

not lose any generality because it is possible to normalize the observation matrix A to

satisfy
∑M

µ=1 (A
µ
i )

2
= 1 for any case. Under this assumption, ri = σihi is satisfied in

Eq. (6), and according to the Maxwell rule [61], a stationary point of σi = H (σih
2
i − λ)

obtained by substituting ri = σihi into Eq. (5) can be determined as follows (see

Appendix A) ,

σi = H
(

Fχ(hi)−
√
2λ
)

, (i = 1, · · · , N) (8)

Fχ(h) =

{

h (χ = +)

|h| (χ = ±)
,

where the index χ of Fχ means whether the source signal is non-negative or signed

and one of the functions, F+(h) or F±(h), is used depending on the source signal, as

explained in Appendix A. Fχ(h) is the identity function if the source signal is non-

negative, and Fχ(h) is the absolute value function if the source signal is signed. In the

presence of noise, this conversion increases the threshold-to-noise ratio, which allows the

low threshold to work as a sparse bias, as shown in the experiment below.

The CIM estimates the support vector σ, i.e. the places of the non-zero elements

in the source signal. According to Eq. (8), the optical field injected to the target (i-th)

OPO pulse is set as

f sig
i = K

(

Fχ(h
CIM
i )− η

)

, (i = 1, · · · , N) (9)
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H Xi

ri

Coherent Ising Machine for Support Estimation 

Classical Digital 
Processor 

for Signal Estimation 

a

b

Figure 2. Quantum-classical hybrid system for L0-RBCS consisting of a coherent

Ising machine (CIM) for support estimation and b classical digital processor (CDP)

for signal estimation. This system performs the alternating minimization described in

Algorithm 1. Pump pulses are injected into an optical parametric oscillator (OPO)

formed in a fiber ring cavity through a second harmonic generation (SHG) crystal. A

periodically poled lithium niobate (PPLN) waveguide device induces a phase-sensitive

degenerate optical parametric amplification of the signal pulses, and each of the OPO

pulses takes either the 0-phase state (corresponding to the up-spin) or the π-phase

state (corresponding to the down-spin) above the oscillation threshold. Part of each

pulse is taken from the main cavity by the output coupler, and it is measured by optical

homodyne detectors. A field programmable gate array (FPGA) calculates the feedback

signal, which is then provided to the intensity modulator (IM) and phase modulator

(PM) to produce the injection field described in Eq. (9) to each of the OPO pulses

through the input coupler. H(Xi) is a binarized value, either 0 or 1, of the in-phase

amplitude of the i-th OPO pulse, which is the support estimate to be transferred to the

CDP. The CDP solves the linear simultaneous equation (Eq. (11)), and the solution

ri is transferred to the CIM.

Fχ(h) =

{

h (χ = +)

|h| (χ = ±)
,

where hCIM
i is the local field explained below, K is the gain of the feedback circuit, and

η is the threshold. η is related to λ in Eqs. (4) and (5) by η =
√
2λ, as shown in Eq. (8).

We use one of two functions, F+(h) or F±(h), depending on the source signal. F+(h) is

the identity function: it is used as a non-negative source signal. F±(h) is the absolute

value function: it is used as a signed source signal.
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The local field for the support estimation in the CIM is set as

hCIM
i = −

M
∑

j=1(6=i)

N
∑

µ=1

Aµ
i A

µ
j rjH(Xj) +

M
∑

µ=1

Aµ
i y

µ, (10)

where rj is a solution for the signal value given by the CDP, Xj is the in-phase amplitude

(generalized coordinate) of the j-th OPO pulse measured by a homodyne detector, and

H(Xj) is the binarized in-phase amplitude of the j-th OPO pulse through the Heaviside

step function. The binarization of amplitude, which was proposed in the discrete

simulated bifurcation [62], is necessary for improving the performance of the support

vector estimation as described below. The first term of Eq. (10) is the mutual interaction

term, while the second term is the Zeeman term. During the support estimation on the

CIM, all rj are fixed.

The support estimation in L0-RBCS is mathematically equivalent to the multi-

user detector in code division multiple access (CDMA) [63, 57]. We reported that in

the CDMA multi-user detector for the CIM, the system performance is not maximized

unless the amplitude of the OPO pulse does not match the amplitude of the received

sequence contained in the Zeeman term [57]. Due to this equivalence to the CDMA

multi-user detector, the mutual interaction term of Eq. (10) can be considered to play a

role in removing crosstalk noise evoked by the matched filter calculated in the Zeeman

term. To remove the crosstalk noise completely, the amplitude of the OPO pulse X

needs to be the same as the amplitude of the elements of the source support vector, and

thus, we binarize the value of X in Eq. (10) to take 1 or 0.

The CDP estimates r, i.e. the values of the non-zero elements in the source signal.

In accordance with the simultaneous equations (6) satisfied by the stationary point that

minimizes H with respect to r, the CDP solves the following simultaneous equations:

ri

M
∑

µ=1

(Aµ
i )

2
= H(Xi)h

CDP
i , (i = 1, · · · , N) (11)

hCDP
i = −

N
∑

j=1(6=i)

M
∑

µ=1

Aµ
i A

µ
jH(Xj)rj +

M
∑

µ=1

Aµ
i y

µ. (12)

Here, hCDP
i in Eq. (12) is the local field for the signal estimation in the CDP, and H(Xj)

is a solution for the support vector given by the CIM. During the signal estimation in

the CDP, all H(Xj) are fixed. The solution of the simultaneous equations (Eq. (11)) is

r =
(

diag[ATA] + SATAS − diag[SATAS]
)−1

SATy,

S = diag (H(X1), H(X2), · · · , H(XN)) .

Algorithm 1 is an outline of the alternating minimization process. In this algorithm,

to make the basin of attraction wider, we heuristically introduce a linear threshold

reduction whereby the threshold η is linearly lowered from ηinit to ηend as the alternating

minimization proceeds.

During the support estimation on the CIM, all rj are fixed, while all H(Xj) are

updated in hCIM
i . On the other hand, during the signal estimation on the CDP, all
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H(Xj) are fixed, while all rj are updated in hCDP
i . Therefore, hCIM

i becomes equal to

hCDP
i when the whole system consisting of the CIM and CDP becomes steady.

2.2. W-SDE for CIM

Here, we introduce a CIM model consisting of N OPO pulses coupled through the

coherent feedback signal described in Eq. (9). By expanding the density operator of the

whole OPO network with the Wigner function and applying Ito’s rule to the resulting

Fokker-Planck equation (see Appendix B), the following W-SDE can be derived.

dci
dt

= (−1 + p− c2i − s2i )ci + K̃(Fχ(h
CIM
i )− η) +

1

As

√

c2i + s2i + 1/2Wi,1,

dsi
dt

= (−1− p− c2i − s2i )si +
1

As

√

c2i + s2i + 1/2Wi,2, (i = 1, · · · , N) (13)

where ci and si are the in-phase and quadrature-phase normalized amplitudes of the i-

th OPO pulse. As is the saturation parameter which determines the nonlinear increase

(abrupt jump) of the photon number at the OPO threshold. The second term of the

R.H.S. in the upper equation of Eq. (13) is the optical injection field corresponding to

Eq. (9), which only has an in-phase component. The in-phase amplitude of the i-th OPO

pulse, Xi, in Eq. (10) is normalized as ci = Xi/As, and K̃ is the normalized feedback gain

corresponding to K. p is the normalized pump rate. p = 1 corresponds to the oscillation

threshold of a solitary OPO without mutual coupling. If p is above the oscillation

threshold (p > 1), each of the OPO pulses is either in the 0-phase state or π-phase state.

The 0-phase of an OPO pulse is assigned to an Ising-spin up-state, while the π-phase

is assigned to the down-state. The last terms of the upper and lower equations express

Algorithm 1 Alternating minimization of CIM-L0-RBCS

Require: M-by-N observation matrix: A, M-dimensional observation signal: y

Ensure: N -dimensional support vector: σ, N -dimensional signal vector: r

1: Initialize r = rinit and η = ηinit
2: for t=0 to 50 do

3: Minimize H with respect to σ by using the CIM:

σ = CIM support estimation(r, η)

# Initialize the c-amplitude as c = 0, and numerically integrate the W-SDE while

increasing the normalized pump rate from 0 to 1.5 for five times the photon’s

lifetime when A2
s = 107 or for two hundred times the photon’s lifetime when

A2
s = 250.

4: Minimize H with respect to r by using the CDP:

S = diag(σ)

r =
(

diag[ATA] + SATAS − diag[SATAS]
)−1

SATy

5: Decrement η: η = max(ηinit(1− t/50), ηend)

6: end for

7: return σ and r
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the vacuum fluctuations injected from external reservoirs and the pump fluctuations

coupled to the OPO system via gain saturation. Wi,1 and Wi,2 are independent real

Gaussian noise processes satisfying 〈Wi,k(t)〉 = 0, 〈Wi,k(t)Wj,l(t
′)〉 = δijδklδ(t− t′).

2.3. Statistical mechanics

2.3.1. Precondition for applying statistical mechanics To solve the W-SDE (13) and

the simultaneous equations (11) using statistical mechanics methods, we introduce the

following observation model in which the values of all variables are randomly chosen,










y1

y2

...

yM











=
1√
M











A1
1 A1

2 . . . A1
N

A2
1 A2

2 . . . A2
2

...
...

. . .
...

AM
1 AM

2 . . . AM
N





















ξ1x1

ξ2x2

...

ξNxN











+











n1

n2

...

nM











, (14)

where [y1, · · · , yM ]T is an M-dimensional observation signal, [n1, · · · , nM ]T is M-

dimensional observation noise, [x1, · · · , xN ]
T is an N -dimensional true source signal,

and [ξ1, · · · , ξN ]T is an N -dimensional true support vector. [Aµ
i ]µ=1,···,M,i=1,···,N is the

M-by-N observation matrix, which is scaled by 1/
√
M . Here, the compression rate

α is defined as α = M/N , as explained in the Introduction. We will deal with the

thermodynamic limit defined as the limit N , M → ∞ with α = M/N kept fixed.

Each element of [Aµ
i ]µ=1,···,M,i=1,···,N is randomly generated and satisfies 〈Aµ

i 〉 = 0

and
〈

Aµ
i A

ν
j

〉

= δijδµν . Thus,
1
M

∑M
µ=1 (A

µ
i )

2 = 1 is satisfied in the thermodynamic limit.

Each element of [n1, · · · , nM ]T is randomly generated, satisfying 〈nµ〉 = 0 and

〈nµnν〉 = β2δµν . β
2 is the variance of the observation noise.

aN elements in [ξ1, · · · , ξN ]T are randomly selected and assigned 1. Other elements

are assigned 0. Here, the sparseness a is defined as the number of non-zero elements in

the source signal, as explained in the Introduction.

Each element of [x1, · · · , xN ]
T is also an independent and identically distributed

value generated from some probability distribution g(x). To verify the system

performance, we use the following probability density functions for generating the

source signal: Gaussian(±) g(x) = e−x2/2σ2

/
√
2πσ2, half-Gaussian(+) g(x) =

2H(x)e−x2/2σ2

/
√
2πσ2, Gamma(+) g(x) = xk−1e−x/θ/(Γ(k)θk), and bilateral

Gamma(±) g(x) = |x|k−1e−x/θ/(2Γ(k)θk) (see Fig. 3). To verify the invariance of our

results relative to the type of probability distribution of the source signals, we used two

different probability distributions in each of the non-negative and signed cases. Gaussian

and bilateral Gamma distributions were used to generate the signed source signals. On

the other hand, half-Gaussian and Gamma distributions were used to generate the non-

negative source signals. The second moments of the half-Gaussian and Gaussian were

set to 〈x2〉x = 1. The shape and scale parameters of the Gamma and bilateral Gamma

were set to k = 2 and θ = 0.4; thus, the second moment of both distributions was

〈x2〉x = 0.96. The figures in the main text show results for source signals generated

from the half-Gaussian and Gaussian, while the supplementary figures show results for

source signals from the Gamma and bilateral Gamma.
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Figure 3. Four probability density functions used for generating the source signal

in the numerical experiments. The half-Gaussian (+) and Gamma (+) are defined

over a non-negative random variable. The Gaussian (±) and bilateral Gamma (±) are

defined over a signed random variable.

2.3.2. Outline of derivation of MEs for the whole hybrid system Here, we summarize

the derivation of the MEs by solving the W-SDE (13) and the simultaneous equations

(11) under the precondition described in Section 2.3.1. The procedure for deriving the

MEs by applying SCSNA to the W-SDE for N interacting OPO pulses is as follows

[53, 24, 54].

(i) A formal transfer function from the local field to the unit output is introduced, and

the local field is defined self-consistently through the formal transfer function.

(ii) Using the formal transfer function, the local field is decomposed into a pure local

field and an Onsager reaction term (ORT). Then, the formal transfer function is

redefined on the pure local field by renormalization of the ORT. Simultaneously,

the macroscopic parameters, which are defined as the site average of the formal

transfer function on the pure local field, are sought when decomposing the local

field.

(iii) By replacing the local field with the pure local field and the ORT, the W-SDE for N

interacting OPO pulses reduces to a system consisting of N independent one-body

OPO pulses. Then, the expectation of the formal transfer function on the pure

local field is approximately derived from the one-body OPO pulse system.



Compressed sensing with quantum-classical hybrid approach 11

(iv) The site average of the formal transfer function on the pure local field, which defines

the macroscopic parameter, is replaced with its expectation derived from the one-

body OPO pulse system.

(v) Finally, the MEs are obtained.

A detailed derivation of the MEs is provided in Appendix C and Appendix D.

As described in Section 2.1, hCIM
i of Eq. (10) becomes equal to hCDP

i of Eq. (12)

when the whole system consisting of the CIM and CDP becomes steady. If the pump

power exceeds the oscillation threshold, the CIM reaches a steady state. Under this

condition, the CIM and CDP share the same local field. Therefore, the CIM and CDP

can be unified into a single mean field system in a steady state.

By substituting the observation model (14), the shared local field can be rewritten

as

hi = − 1

M

M
∑

j=1(6=i)

N
∑

µ=1

Aµ
i A

µ
j rjH(cj)

+
1

M

M
∑

j=1

N
∑

µ=1

Aµ
i A

µ
j ξjxj +

1√
M

M
∑

µ=1

Aµ
i n

µ. (15)

where Xj is replaced with cj , which is the real part of the normalized complex Wigner

amplitude cj + isj explained in Appendix B.

The W-SDE (13) of the i-th OPO implies that H(ci) is a stochastic variable

depending on the local field hi and time t in the steady state. Here, we introduce the

following formal time-dependent stochastic transfer function from hi to H(ci) [24, 54]:

H(ci) = X(hi, t).

Substituting X(hi, t) into Eq. (11) and noting that 1
M

∑M
µ=1 (A

µ
i )

2
= 1, we can write a

formal time-dependent stochastic transfer function from hi to ri as

ri = G(hi, t) = X(hi, t)hi.

It is difficult to specify such a transfer function concretely, but it is possible to introduce

one formally. As a premise that this transfer function holds, we assume that the

microscopic memory effect can be neglected in the steady state [64].

The local field can be defined self-consistently through the formal transfer function

G, as follows:

hi = − 1

M

M
∑

j=1(6=i)

N
∑

µ=1

Aµ
i A

µ
jG(hj , t)

+
1

M

M
∑

j=1

N
∑

µ=1

Aµ
i A

µ
j ξjxj +

1√
M

M
∑

µ=1

Aµ
i n

µ, (16)

Given the formal transfer function, the local field hi can be separated into a pure

local field and an ORT [53, 24, 54] through manipulation of SCSNA in Appendix D.

hi = h̃i + ΓH(ci)ri. (17)
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Then, X(hi, t) and G(hi, t) can be redefined with the pure local field h̃i by renormalizing

the ORT as follows:

H(ci) = X̃(h̃i, t), ri = G̃(h̃i, t) =
1

1− Γ
h̃iX̃(h̃i, t), (18)

where X̃ and G̃ are formal time-dependent stochastic transfer functions from the pure

local field h̃i to H(ci) and ri, respectively. The pure local field h̃i and the coefficient of

ORT Γ can be self-consistently obtained as

h̃i =
αxiξi
α + aU

+
α

α + aU

√

β2 +
a

α
(Q+ 〈x2〉x − 2R)zi, Γ =

aU

α+ aU
, (19)

where zi is Gaussian random noise obtained by separating the ORT from the cross-

talk noise (see Appendix D), and xi and ξi are the true source signal and true support

described in Section 2.3.1. 〈x2〉x is the second moment of the source signal. R, Q

and U are macroscopic parameters called the overlap, mean square magnetization, and

susceptibility, respectively. R, Q and U are defined as follows.

R =
1

aN

N
∑

j=1

xjξjG̃(h̃i, t), (20)

Q =
1

aN

N
∑

j=1

G̃(h̃i, t)
2. (21)

U =
1

aN

N
∑

j=1

∂G̃(h̃j , t)

∂h̃j

∂h̃j

∂hj
, (22)

The overlap R is the inner product between the source signal xjξj and G̃(h̃i, t), the mean

square magnetization Q is the site average of the square of G̃(h̃i, t), and the susceptibility

U is the site average of the sensitivity of G̃(h̃i, t) to the bare local field hi.

Through the SCSNA manipulation, the terms causing the correlation between OPO

pulses are extracted by performing a first-order Taylor expansion and form the ORT and

the scale coefficient α/(α+ aU) of the pure local field h̃i (see Appendix D). Therefore,

the pure local field h̃i of the i-th OPO pulse is statistically independent of h̃j of the j-th

OPO pulse when i 6= j. The ORT can be regarded as effective self-feedback via other

OPO pulses.

It is difficult to specify the formal transfer function G̃ concretely, but it is possible

to calculate the expectation as follows. By replacing the bare local field hi with

the pure local field h̃i and the ORT ΓH(ci)ri, the W-SDE (C.2) in Appendix C can

be regarded as describing N independent one-body OPO pulses in the steady state,

because the pure local fields h̃i are statistically independent of each other. Thus,

the expectations
〈

G̃(h̃, t)
〉

SDE
,
〈

G̃(h̃, t)2
〉

SDE
and

〈

∂G̃(h̃, t)/∂h̃
〉

SDE
, which are the

conditional expectations of G̃(h̃, t), G̃(h̃, t)2 and ∂G̃(h̃, t)/∂h̃ given the pure local field

h̃, can be approximately derived from the one-body W-SDE (see Appendix C).

Because the pure local fields h̃i are statistically independent of each other, the site

averages in R, Q and U can be replaced with the averages of
〈

G̃(h̃, t)
〉

SDE
,
〈

G̃(h̃, t)2
〉

SDE
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and
〈

∂G̃(h̃, t)/∂h̃
〉

SDE
with respect to the Gaussian random noise z and the source signal

xξ in h̃.

Finally, the following MEs are obtained:

R =
1

a

∫ +∞

−∞

Dz

〈

xξhp

∫ +∞

0

dc

∫ +∞

−∞

dsf(c, s|hp)

〉

x,ξ

, (23)

Q =
1

a

∫ +∞

−∞

Dz

〈

h2
p

∫ +∞

0

dc

∫ +∞

−∞

dsf(c, s|hp)

〉

x,ξ

, (24)

U

√

β2 +
a

α
(Q + 〈x2〉x − 2R)

=
1

a

∫ +∞

−∞

Dzz

〈

hp

∫ +∞

0

dc

∫ +∞

−∞

dsf(c, s|hp)

〉

x,ξ

, (25)

where 〈·〉x,ξ denotes the average with respect to x and ξ, and

f(c, s|hy) ∝ exp





2A2
s

(

cK̃ (Fχ(hy)− η)− V (c, s)
)

Ξc(z, xξ) + Ξs(z, xξ) + 0.5



 , (y = m, p)

hp = xξ +

√

β2 +
a

α
(Q + 〈x2〉x − 2R)z,

hm =
1

1 + a
α
U
hp,

V (c, s) =
1

2
(1− p)c2 +

1

2
(1 + p)s2 +

1

2
c2s2 +

1

4
c4 +

1

4
s4.

Ξc(z, xξ) and Ξs(z, xξ) can be determined self-consistently from the following equations,

Ξc(z, xξ) =

∫ 0

−∞

dc

∫ +∞

−∞

dsc2f(c, s|hm) +

∫ +∞

0

dc

∫ +∞

−∞

dsc2f(c, s|hp),

Ξs(z, xξ) =

∫ 0

−∞

dc

∫ +∞

−∞

dss2f(c, s|hm) +

∫ +∞

0

dc

∫ +∞

−∞

dss2f(c, s|hp).

As is the saturation parameter, which diverges in the infinite limit of the amplitude of

the injected pump field ǫ → +∞ (see Appendix B). In the limit As → +∞, we obtain

the following simplified MEs,

R =
1

a

∫ +∞

−∞

Dz
〈

xξhpX̃(hp, hm)
〉

x,ξ
, (26)

Q =
1

a

∫ +∞

−∞

Dz
〈

h2
pX̃(hp, hm)

〉

x,ξ
, (27)

U

√

β2 +
a

α
(Q + 〈x2〉x − 2R)

=
1

a

∫ +∞

−∞

Dzz
〈

hpX̃(hp, hm)
〉

x,ξ
. (28)

Here, X̃(hp, hm) is an effective output function obtained from the Maxwell rule [61]:

X̃(hp, hm) = H(Fχ(hp) + Fχ(hm)− 2η).
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2.3.3. Perturbation expansion for ME in the limit As → ∞ and η → +0 By

introducing a new macroscopic parameter W defined by W = Q − 2R, when there

is no observation noise, i.e. β = 0, we can rewrite the ME in the limit As → ∞ as

W =
a

α

∣

∣S +
〈

x2
〉

x

∣

∣

1

a

∫ +∞

−∞

Dzz2
〈

X̃(hp, hm)
〉

x,ξ

− 1

a

∫ +∞

−∞

Dz
〈

x2ξX̃(hp, hm)
〉

x,ξ
, (29)

X̃(hp, hm) = H
(

Fχ(hp)− 2η/
(

1 + 1/Fχ

(

1 +
a

α
U
)))

.

Here, we put 2η/
(

1 + 1/Fχ

(

1 + a
α
U
))

= ζ2. In the limit η → +0, i.e. ζ → 0, the ME

(29) has a solution W = −〈x2〉x corresponding to perfect reconstruction.

We assume that the above ME has the following solution when ζ ≪ 1.

W = −
〈

x2
〉

x
+ ζ2w.

Substituting this into the ME (29) and expanding around ζ = 0, we obtain the following

relation independent of the probability distribution of x, g(x), if g(0) and g′(0) are finite.

w =
a

α
|w|.

This equation suggests that the solution w = 0, i.e. the perfect reconstruction solution,

is stable when a < α, neutral when a = α, and unstable when a > α.

Thus, when there is no observation noise, in the infinite limit of the amplitude of

the injected pump field (i.e. A2
s → ∞) and in the infinitesimal limit of η, the critical

point becomes a = α independent of g(x).

2.3.4. ME of LASSO Under the observation model (14), the update rule of the LASSO

is given by

Yi := Tχ,η(hi), i = 1, · · · , N

hi = − 1

M

M
∑

j=1(6=i)

N
∑

µ=1

Aµ
i A

µ
j Yj +

1

M

M
∑

j=1

N
∑

µ=1

Aµ
i A

µ
j ξjxj +

1√
M

M
∑

µ=1

Aµ
i n

µ,

where Tχ,η(hj) is a soft-thresholding function with threshold η, defined as

T+,η(h) =

{

h− η (h ≥ η)

0 (h < η)
,

T±,η(h) =











h− η (h ≥ η)

0 (−η < h < η)

h+ η (h ≤ −η)

.

We use two different functions T+,η(h) and T±,η(h) depending on the source signal.

T+,η(h) is for non-negative source signals, and T±,η(h) is for signed source signals.

Following the same manipulation of the SCSNA, we obtain the following MEs,

R =
1

a

∫ +∞

−∞

Dz
〈

xξT̃χ,η(h̃)
〉

x,ξ
, (30)
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Q =
1

a

∫ +∞

−∞

Dz
〈

T̃χ,η(h̃)
2
〉

x,ξ
, (31)

U

√

β2 +
a

α
(Q+ 〈x2〉x − 2R) =

1

a

∫ +∞

−∞

Dzz
〈

T̃χ,η(h̃)
〉

x,ξ
, (32)

where the pure local field of the LASSO becomes

h̃i =
xξ

1 + a
α
U

+

√

β2 + a
α
(Q + 〈x2〉x − 2R)

1 + a
α
U

z.

T̃χ,η(h̃) is an effective output function into which the ORT is renormalized:

T̃+,η(h̃) =

{

(

1 + a
α
U
)

(h̃− η) (h̃ ≥ η)

0 (h̃ < η)
,

T̃±,η(h̃) =











(

1 + a
α
U
)

(h̃− η) (h̃ ≥ η)

0 (−η < h̃ < η)
(

1 + a
α
U
)

(h̃ + η) (h̃ ≤ −η)

.

T̃+,η(h̃) is for non-negative source signals, and T̃±,η(h̃) is for signed source signals.

2.4. Root-mean-square error

The numerical experiments used the root-mean-square error (RMSE) as a measure of

estimation accuracy. The RMSE of CIM L0-RBCS and LASSO is

RMSE =

√

√

√

√

1

N

N
∑

i=1

(riH(ci)− xiξi)2 =
√

aQ− 2aR + a 〈x2〉x,

where R and Q are the overlap and mean square magnetization defined above, a is

sparseness, and a 〈x2〉x is the second moment of the source signal. The RMSE is zero if

CIM L0-RBCS / LASSO perfectly reconstructs the source signal.

3. Results

3.1. Evaluation of CIM L0-RBCS with statistical mechanics

3.1.1. Typical solution of MEs, its accuracy, and comparison with LASSO when β = 0

First, several typical solutions of the MEs are shown for when there is no observation

noise (i.e. β = 0) and the source signals are from a half-Gaussian (+) or Gaussian (±).

Moreover, to confirm the accuracy of the MEs, we compared the solutions to the MEs

with those given by Algorithm 1.

Figures 4a and 4b show the root-mean-square errors (RMSEs) (defined in Section

2.4) of the solutions to the MEs with A2
s = 250 (Eqs. (23)(24)(25)) and those in the

limit A2
s → ∞ (Eqs. (26)(27)(28)) for various values of the threshold η and compression

rate α (red and green solid lines). The red line shows a solution whose RMSE increases

monotonically from 0 to some critical value as the sparseness a increases from 0 to some

critical point ac. On the other hand, the green line indicates a solution whose RMSE
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Figure 4. Comparison of solutions of the MEs with solutions of Algorithm 1: cases

of no observation noise (i.e. β = 0) and half-Gaussian (+) and Gaussian (±) source

signals. The RMSEs of the solutions are plotted as a function of sparseness a for

various thresholds η and compression rates α. a Comparison of solutions of the MEs

(23)(24)(25) and those of Algorithm 1 with A2

s
= 250. b Comparison of solutions

of the MEs (26)(27)(28) for As → ∞ and those of Algorithm 1 with A2

s
= 107.

In a and b, the red and green lines respectively indicate RMSEs of the near-zero

RMSE state and non-zero RMSE state in CIM L0-RBCS, which were obtained with

the MEs (23)(24)(25) with A2
s = 250 and the MEs (26)(27)(28). The blue lines are

the RMSEs of the near-zero RMSE state in LASSO, which were obtained with the

MEs (30)(31)(32) with the same threshold value of η indicated above the graphs. The

circles and error bars represent the mean values and standard deviations of ten trial

solutions numerically obtained by Algorithm 1. To confirm the existence of solutions

of Algorithm 1 corresponding to the near-zero RMSE states indicated by the MEs, r

was initialized to the true signal value, i.e. x ◦ ξ, and η was kept constant by setting

ηinit = ηend to the value of η indicated above the graphs. For all graphs, K̃ = 0.25

and N = 2000.

decreases monotonically from some finite value to some critical value as a decreases

from 1 to some other critical point ac. Here, the point at which the RMSE numerically
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calculated with the MEs discontinuously changes with increasing/decreasing a is defined

as the critical point ac, and the RMSE at ac is defined as the critical value. In the

following, the state indicated by the red line is called the near-zero-RMSE state, and

the state indicated by the green line is called the non-zero-RMSE state. Regarding the

results obtained by the MEs (26)(27)(28), in the case of the half-Gaussian (+), two

states, a non-zero-RMSE state (red solid line) and a near-zero one (green solid line),

coexist, as in the CIM-implemented CDMA multiuser detector [65, 57]. On the other

hand, in the case of the Gaussian (±), we numerically found only a near-zero RMSE

state (red solid line). As shown by the red solid lines in Fig. 4b, in the limit A2
s → ∞, as

η was lowered to 0.01, the RMSE of the near-zero-RMSE state decreased monotonically

and the critical point ac from the near-zero-RMSE state grew monotonically.

The circles and error bars in the figures indicate the mean and standard deviation of

the RMSEs of ten trial solutions numerically obtained using Algorithm 1 with A2
s = 250

and A2
s = 107. Note that A2

s = 107 is on the same order as A2
s in real experimental

CIMs. To confirm if Algorithm 1 has solutions corresponding to the near-zero-RMSE

states obtained by the MEs, r was initialized to the true signal value, i.e. x ◦ ξ, in the

alternating minimization process in Algorithm 1. In both the half-Gaussian case (+) and

Gaussian case (±), the near-zero-RMSE states of the MEs (26)(27)(28) (red solid lines

in Fig. 4b) matched the numerical results of Algorithm 1 with A2
s = 107 (circles with

error bars in Fig. 4b), and the critical points given by the MEs (26)(27)(28) coincided

with those of Algorithm 1. On the other hand, the theoretical results obtained from the

MEs (23)(24)(25) with A2
s = 250 (red solid lines on the left of Fig. 4a) were in good

agreement with the numerical results of Algorithm 1 with A2
s = 250 (circles with error

bars on the left of Fig. 4a) in the half-Gaussian case (+), whereas the critical points

given by the MEs (23)(24)(25) became lower than those of Algorithm 1 when η = 0.01

in the Gaussian case (±), as shown on the right of Fig. 4a.

Furthermore, to compare the abilities of CIM L0-RBCS and LASSO, we computed

the RMSE profiles of LASSO using the MEs (30)(31)(32) with the same threshold value

as CIM L0-RBCS; these profiles are superimposed upon Fig. 4 (blue solid lines). The

RMSEs of CIM L0-RBCS in the limit A2
s → ∞ (red solid lines in Fig. 4b) were lower

than those of LASSO (blue solid lines) at the same compression rate α and sparseness

a, and the critical points of CIM L0-RBCS were higher than those of LASSO. On the

other hand, the RMSEs of CIM L0-RBCS with A2
s = 250 (red solid lines and circles with

error bars in Fig. 4a) were lower than those of LASSO (blue solid lines) when η = 0.1

and 0.05, but the theoretical RMSEs of CIM L0-RBCS became higher than those of

LASSO when η = 0.01.

We numerically checked that qualitatively the same results were obtained even in

the case of source signals from the Gamma (+) and the bilateral Gamma (±) (See

Supplementary Fig. 1).

3.1.2. Phase diagrams of CIM L0-RBCS and LASSO when β = 0 We drew phase

diagrams of CIM L0-RBCS for various values of η when there was no observation noise



Compressed sensing with quantum-classical hybrid approach 18

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a
c

L0

L1(+)

=0.2

=0.1

=0.05

=0.03

=0.01

=0.001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a
c

L0

L1( )

=0.2

=0.1

=0.05

=0.03

=0.01

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a
c

L0

L1(+)

Lower

=1.0

=0.8

=0.6

=0.4

=0.2

=0.1

=0.05

=0.03

=0.01

=0.001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a
c

L0

L1( )
Lower

=1.0

=0.8

=0.6

=0.4

=0.2

=0.1

=0.05

=0.03

=0.01

=0.001

Half-Gaussian(+) Gaussian(±)

LASSO

CIM L0 (A
s
2→∞)
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Figure 5. Phase diagrams of CIM L0-RBCS in the limit A2

s
→ ∞ and LASSO

for various η: cases of no observation noise (i.e. β = 0) and half-Gaussian (+) and

Gaussian (±) source signals. a Phase diagrams of CIM L0-RBCS. b Phase diagrams

of LASSO. In a, the red lines show the critical point ac from the near-zero-RMSE

state as a function of α. The black dotted-dashed line in each plot indicates the lower

bound of the critical points from the near-zero-RMSE state in CIM L0-RBCS. In b,

the blue lines show the critical point ac of LASSO as a function of α. The black solid

line in each plot is a threshold determining whether or not the problem of L0-norm

minimization CS has a solution with no error [59], while the black dotted line is a

threshold determining whether or not the problem of L1-norm minimization CS has a

solution with no error for the non-negative case and signed case [58].

(i.e. β = 0). The red lines in Figure 5a and Supplementary Fig. 2 show the critical

points from the near-zero-RMSE state (whose definition is given in Section 3.1.1) in

the half-Gaussian case (+) and Gaussian case (±). The critical points in Fig. 5a are
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for the limit A2
s → ∞, while the ones in Supplementary Fig. 2 are for A2

s = 250. To

compare the properties of CIM L0-RBCS with those of LASSO, Fig. 5b shows the phase

diagrams of LASSO; the blue lines are the critical points from the near-zero-RMSE state

for various η. If there is no discontinuous change in RMSE in 0 ≤ a ≤ 1, the critical

point is not drawn on the phase diagrams.

Several research groups have derived thresholds for determining whether or not the

problem of Lp minimization-based CS (minimize ||x||p s.t. y = Ax) has a solution with

no error. In particular, thresholds were derived for when each entry of A is an i.i.d.

zero-mean Gaussian random number in the thermodynamic limit N , M → ∞ with

α = M/N kept fixed [58, 59, 60, 44], which is the same condition as the precondition in

this paper. To confirm whether the theoretical performance limit of CIM L0-RBCS is

comparable to the thresholds of L0/L1 minimization-based CS in the thermodynamic

limit, below we compare the critical points of CIM L0-RBCS with the thresholds of

L0/L1 minimization-based CS.

The threshold of L0 minimization-based CS is given by [59, 44]

ath = α.

The threshold ath of L0 minimization-based CS as a function of the compression rate

α is shown by the black solid lines in Fig. 5. If α > a, a no-error solution is stable

in L0 minimization-based CS in the thermodynamic limit. Note that the existence of

a no-error solution was proved, but the performance of a specific algorithm for finding

the solution was not shown in [59, 44]. As demonstrated in Fig. 5a, in the limit

A2
s → ∞, the critical points of CIM L0-RBCS become asymptotic to the black solid

line as η decreases and the RMSEs of CIM L0-RBCS are asymptotic to zero (the red

lines in Fig. 4b). Thus, as η decreases, the typical criticality of CIM L0-RBCS is

asymptotic to that of L0 minimization-based CS. This result shows that, as η decreases,

the theoretical performance limit of CIM L0-RBCS in principle approaches the threshold

of L0-minimization-based CS.

The threshold of L1 minimization-based CS, i.e., the weak threshold, is given by

[58, 60, 59],

ath = αmax
z≥0

{

1− (κχ/α) (1 + z2Φ(−z) − zφ(z))

1 + z2 − κχ (1 + z2Φ(−z) − zφ(z))

}

≤ α, (0 ≤ α ≤ 1),

where κχ = 1, 2, for the non-negative model (χ = +) and the signed model (χ = ±),

respectively. φ(z) is the standard Gaussian distribution and Φ(z) is the cumulative

Gaussian distribution. The threshold ath of L1-minimization-based CS as a function of

the compression rate α is shown by the black dotted lines in Fig. 5. If ath(α) > a, a no-

error solution is stable in L1 minimization-based CS. As η decreases, the critical points

of LASSO for the half-Gaussian (+) and Gaussian (±) become asymptotic to the two

black dotted lines, and the RMSEs of LASSO become asymptotic to zero (the blue lines

in Fig. 4). Thus, as η decreases, the typical criticality of LASSO become asymptotic

to that of L1-minimization-based CS. On the other hand, the critical point of CIM

L0-RBCS goes beyond the threshold of L1 minimization-based CS as η decreases.
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CIM L0-RBCS and LASSO have these asymptotic properties even when the source

signals are from the Gamma (+) and bilateral Gamma (±) (see Supplementary Fig.

3b). Note that we have theoretically proved that the asymptotic property of CIM L0-

RBCS is invariant to differences in the probability distributions of the source signal by

applying a perturbation expansion to the MEs (26)(27)(28) in the limit η → +0 (see

Section 2.3.3). Thus, we have confirmed this theoretical result numerically.

On the other hand, when A2
s = 250, the critical points of CIM L0-RBCS are not

asymptotic to the black solid line a = α, as shown in Supplementary Figs. 2 and 3a.

Around η = 0.1, the critical point is closest to a = α.

The black dotted-dashed lines in Fig. 5a shows the lower bounds of the critical

points of CIM L0-RBCS in the limit A2
s → ∞. The lower bound lines are above the

threshold (black dotted line) of L1-minimization-based CS when the compression rate

α is lower than around 0.5 for the half-Gaussian (+) and 0.7 for the Gaussian (±). The

lower boundary property in Fig. 5a is satisfied even in the case of source signals from

the Gamma (+) and bilateral Gamma (±) (see Supplementary Fig. 3b). On the other

hand, there are no such lower bounds when A2
s = 250 (Supplementary Figs. 2 and 3a).

3.1.3. Basin of attraction when β = 0 To check the practicality of CIM L0-RBCS, we

verified the basin of attraction of Algorithm 1. To make the basin wider, we heuristically

introduced a linear threshold attenuation wherein the threshold η was linearly lowered

from ηinit to ηend as the minimization process was alternated (see Algorithm 1). First,

we carried out numerical experiments to verify the size of the basin of attraction for

various initial values ηinit for fixed ηend = 0.01 in the case of no observation noise (i.e.

β = 0). As shown in Fig. 6a, the basin of attraction tended to be widened by selecting

a higher initial threshold ηinit than ηend. As the compression rate α decreased, this

tendency became more marked, especially in the Gaussian case (±).

Next, we sought to confirm how well Algorithm 1 converged on the near-zero RMSE

state given by the MEs (26)(27)(28) when starting from an initial state r = 0 for various

ηinit (Fig. 6b). As demonstrated in Fig. 6b, when the sparseness a was lower than the

lower bound of the critical points (the black dotted-dashed line in Fig. 5a), Algorithm 1

with ηinit = 0.6 converged to the solutions (red lines) of the MEs (26)(27)(28), whereas

it failed to converge to the solutions for other values of ηinit. Compared with the RMSE

profiles of LASSO in Fig. 6b, Algorithm 1 exceeded LASSO’s estimation accuracy under

almost all of the conditions in which LASSO had a small error.

The properties for the source signals taken from the Gamma (+) and bilateral

Gamma (±) distributions (see Supplementary Fig. 4) are similar to those in Fig. 6.

3.1.4. Performance of CIM L0-RBCS and LASSO when β 6= 0 Moreover, to check the

practicality of CIM L0-RBCS, we verified its accuracy and convergence in the presence

of observation noise (i.e. β 6= 0). We searched for the optimal threshold values that

would give the minimum RMSEs of CIM L0-RBCS and those of LASSO (Figs. 7a

and 8a) and computed the difference between their minimum RMSEs (Figs. 7b and
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Figure 6. Basin of attraction of CIM L0-RBCS depending on the initial threshold

ηinit: cases of no observation noise (i.e. β = 0) and half-Gaussian (+) and Gaussian (±)

source signals. a Size of the basin of attraction of Algorithm 1 for various ηinit under

fixed ηend = 0.01. Pairs of points connected by a line indicate RMSEs of the initial and

final states σ◦r of Algorithm 1 for a = 0 to 1 in 0.1 increments. A2
s = 107. α = 0.4 and

0.8. b Final states of Algorithm 1 when starting from an initial state r = 0 for various

ηinit. The circles and error bars represent the mean values and standard deviations

of twenty trial solutions numerically obtained by Algorithm 1 with ηend = 0.01 and

A2

s = 107. The red lines show the solutions of the MEs (26)(27)(28) with near-zero

RMSE when η = 0.01 and A2

s
→ ∞, while the blue lines indicate the RMSEs of LASSO

when η = 0.01. The black lines are the lower bounds of the critical points of the CIM

L0-RBCS. K̃ = 0.25 and N = 4000.

8b) under the optimal threshold for each method when β = 0.01, 0.05, and 0.1. The

minimum RMSE was obtained by conducting a grid search on the set of solutions to

the MEs (26)(27)(28) and the MEs (30)(31)(32) in the range 0.002 ≤ η ≤ 0.5 at each
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Figure 7. RMSEs under the optimal threshold when there is observation noise: case of

half-Gaussian (+) source signals. The standard deviation of the observation noise was

set to β = 0.01, 0.05 and 0.1. a Comparison of RMSEs of CIM L0-RBCS and those

of LASSO under the optimal threshold for each method. The color scale indicates

the minimum RMSE under the optimal threshold at each point (a, α), which was

obtained by a grid search for the set of solutions to the MEs (26)(27)(28) and the

MEs (30)(31)(32) in the range 0.002 ≤ η ≤ 0.5 at each point (a, α). b Difference in

minimum RMSE between LASSO and the CIM L0-RBCS under the optimal threshold

for each method. The color scale indicates the minimum RMSE of CIM L0-RBCS

subtracted from that of LASSO at each point (a, α). c Comparison of solutions of the

MEs (26)(27)(28) and those of Algorithm 1 with A2
s = 107. The red solid lines show

the near-zero RMSE solutions to the MEs (26)(27)(28). The circles and error bars

represent the mean values and standard deviations of ten trial solutions numerically

obtained by Algorithm 1 when starting from the initial state r = 0. The value of η

indicated on the right side of the graphs in c is the optimal threshold at α = 0.5, which

was set as ηend. For all the graphs in c, ηinit = 0.6, K̃ = 0.25 and N = 4000.
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Figure 8. RMSEs under the optimal threshold when there is observation noise: case

of Gaussian (±) source signals. The standard deviation of the observation noise was

set to β = 0.01, 0.05, and 0.1. The methods and conditions for obtaining these graphs

are the same as in Fig. 7 except for the probability distribution of the source signals.

a Comparison of RMSEs of CIM L0-RBCS and those of LASSO under the optimal

threshold for each method. The color scale indicates the minimum RMSE under the

optimal threshold at each point (a, α). b Difference in minimum RMSE between

LASSO and the CIM L0-RBCS under the optimal threshold for each method. The

color scale indicates the minimum RMSE of CIM L0-RBCS subtracted from that of

LASSO at each point (a, α). c Comparison of solutions of the MEs (26)(27)(28) and

those of Algorithm 1 with A2
s = 107 when starting from the initial state r = 0.

point (a, α). These figures show cases of the half-Gaussian (+) and Gaussian (±) source

signals. As indicated in Figs. 7a and 8a, as β decreases, the critical points from the-

near-zero RMSE state in CIM L0-RBCS under the optimal threshold approaches the

critical line (black solid line) of L0-minimization-based CS, and the RMSEs of CIM L0-

RBCS under the optimal threshold decreases. As shown in Figs. 7b and 8b, the RMSEs
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of LASSO are higher than those of CIM L0-RBCS under almost all of the conditions

in which LASSO has an error less than 0.2; thus, CIM L0-RBCS exceeds LASSO’s

estimation accuracy under the optimal threshold for each method.

Next, for the case of observation noise, we determined whether the output of

Algorithm 1 withA2
s = 107 converged on solutions to the MEs (26)(27)(28) when starting

from the initial state r = 0 and ηinit = 0.6. As shown in Figs. 7c and 8c, near or at the

critical points, Algorithm 1 converged to the solutions of the MEs (26)(27)(28).

The properties for the source signals from the Gamma (+) and bilateral Gamma

(±) distributions (see Supplementary Figs. 5 and 6) are similar to those in Fig. 7 and

8.

3.2. Performance of CIM L0-RBCS on realistic data

We evaluated the performance of CIM L0-RBCS and other methods on realistic data.

We used MRI data obtained from the fastMRI datasets [66]. A Haar-wavelet transform

(HWT) was applied to the data, and 86.6% of the HWT coefficients were set to zero to

create a signal spanned by Haar basis functions with a sparseness of 0.134 (left panel

of Fig. 9a). The k-space data shown in the middle panel of Fig. 9a was obtained by

calculating the discrete Fourier transform (DFT) from the signal of the left panel of Fig.

9a, and 40% of the k-space data were undersampled at random red points in the middle

panel of Fig. 9a to create an observation signal with a compression rate of 0.4. The

right panel of Fig. 9a shows an image with incoherent artifacts obtained by zero-filling

Fourier reconstruction from the randomly undersampled k-space data.

To achieve higher reconstruction accuracy from the undersampled signal, we

formulated the following implementable optimization problem on a CIM with L0 and

L2 norms [67]:

x = argminx∈RN

(

1

2
‖y − SFx‖22 +

1

2
γ ‖∆vx‖22 +

1

2
γ ‖∆hx‖22 + λ ‖Ψx‖0

)

,

where x is a source signal, y is a k-space undersampling signal, F is a DFT matrix,

S is an undersampling matrix, Ψ is a HWT matrix, ∆v and ∆h are respectively the

second-derivative matrices for the vertical and horizontal directions, and γ and λ are

regularization parameters. Under the variable transformation r = Ψx, the mutual

interaction matrix J and the Zeeman term hz for CIM L0-RBCS are set as

J = DJ̃D, hz = DSFΨTy,

J̃ = ΨF TSTSFΨT + γΨ∆T
v ∆vΨ

T + γΨ∆T
h∆hΨ

T ,

D =







1/
√

J̃11 0
. . .

0 1/
√

J̃NN






,

where J̃ii is a diagonal element of J̃ and D is a diagonal matrix to normalize all

diagonal elements of J̃ to 1. Note that under the conversion described in Eq. (8)

and Appendix A, all diagonal elements of the mutual interaction matrix J need to be
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Figure 9. Performance of CIM L0-RBCS and other methods on realistic data. a Left:

Original image consisting of 128×128 pixels, which is spanned by Haar basis functions.

The sparseness of the original image is 0.134. Middle: k-space data (128× 128 pixels)

obtained by performing a discrete Fourier transform on the original image. 30% of

the k-space data were undersampled at random red points. Thus, the compression

rate of the observation signal is 0.3. Right: Zero-filling Fourier reconstruction from

undersampled k-space data. b Reconstructed images with lowest errors and their

RMSEs. Left: CIM L0-RBCS. ηinit = ηend = 0.004. The initial state was given

by LASSO. Middle: LASSO. η = 0.0004. Right: L1 minimization-based CS. Inset

figures: Enlarged regions labeled by red rectangles. Yellow arrows point to pixel-level

differences in the images. c RMSEs as a function of the threshold η. Blue line with

error bars: CIM L0-RBCS. Ten trials. Red line: LASSO. Circle: L1 minimization-

based CS. For all methods, γ = 0.0001.

1. After the reconstruction with CIM L0-RBCS, r′, which is the output of the CDP, is

transformed to the original scale signal r with r = Dr′.
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Algorithm 2 Monte Carlo algorithm for support estimation

Require: M-by-N observation matrix: A, M-dimensional observation signal: y, N -

dimensional signal vector: r

Ensure: N -dimensional support vector: σ

1: Initialize σ = 0

2: for t=0 to 105N do

3: Update the temperature T

4: Randomly choose the spin index i between 1 and N uniformly

5: Calculate the acceptance ratio

L = exp

(

− 1

T
(H(σ1, · · · , 1− σi, · · · , σN)−H(σ1, · · · , σi, · · · , σN ))

)

= exp

(

1

2T
(1− 2σi)

(

−r2i

M
∑

µ=1

Aµ
i
2 + 2rihi − 2λ

))

.

6: Generate a uniform random number U in the interval [0, 1)

7: Update the spin variable:

σi =

{

1− σi ifL > U

σi ifL ≤ U
.

8: end for

9: return σ

Furthermore, we evaluated the performance of LASSO minimizing 1
2
‖y − SFx‖22+

1
2
γ ‖∆vx‖22 + 1

2
γ ‖∆hx‖22 + λ ‖Ψx‖1 and that of L1 minimization-based CS minimizing

‖Ψx‖1 + γ′ ‖∆vx‖22 + γ′ ‖∆hx‖22 s.t. y = SFx.

Figure 9b shows images (and RMSEs) reconstructed from Algorithm 1 with

A2
S = 107 (left panel of Fig. 9b), LASSO [41] (middle panel of Fig. 9b), and L1-

minimization-based CS implemented in CVX [68, 69] (right panel of Fig. 9b). As

indicated in the images surrounded by the red circles in these panels, CIM L0-RBCS

gave the most accurate reconstruction.

We evaluated the RMSEs of the three methods as a function of the threshold η. As

shown in Fig. 9c, the blue line with error bars is the RMSE of CIM L0-RBCS obtained

from ten trials, the red line is the RMSE of LASSO, and the circle is the RMSE of

L1 minimization-based CS. There is an optimal value of η to minimize the RMSEs of

both CIM L0-RBCS and LASSO because of the trade-off between detecting small non-

zero elements and eliminating incoherent artifacts by thresholding. The RMSE of CIM

L0-RBCS was lower than those of the other methods in a wide range of η.

3.3. Comparison of CIM with simulated annealing

To demonstrate the efficacy of the CIM, we compared its ability to estimate support

vectors with that of simulated annealing (SA).

Algorithm 2 is the Monte Carlo algorithm we used for the support vector estimation
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Figure 10. Comparison of CIM with SA in support vector estimation. a Temporal

profiles of support vector retrieval of CIM and SA. Threshold η = 0.05 corresponding to

L0-regularization parameter λ = η2/2 = 0.00125. Left: Temporal change in direction

cosine between the true support vector and one estimated with the CIM (A2

s
= 107)

under various rising schedule of pump rate. 1.5: constant (1.5). 1.5(t/5): linear

rising. 1.5(t/5)2: square rising. In all cases, pump rates in the final state of t = 5

are 1.5. Right: Temporal change in direction cosine between the true support vector

and estimated one with SA for various temperature lowering schedules. 0: constant

(zero). 0.02/ exp(t/τ): exponential cooling. 0.02/(1 + t/τ): inverse linear cooling.

0.02/ log(e1 + t/τ): inverse log cooling. Except for the case of zero temperature, the

initial temperature at t = 0 is 0.02, and each τ is set so that the final temperature at

t = 105 is 0.00002. Both graphs show the mean (solid line) and standard deviation

(dashed line) of 1000 samples. b Distribution of direction cosines of the final state in the

CIM and SA. Upper left: Histogram of final direction cosines at t = 5 of 1000 samples

obtained from the CIM under square-rising pump-rate schedule. Others: Histograms of

final direction cosines at t = 105 of 1000 samples obtained from SA at zero temperature,

exponential cooling, inverse linear cooling and inverse log cooling schedules. The two-

sample one-sided Kolmogorov-Smirnov test suggests that the cumulative histograms

for SA are significantly larger than that of the CIM, and thus, the histogram of the final

direction cosines of the CIM is significantly biased toward right side compared with

those of SA (Alternative hypothesis). ** in the graphs means P-value < 0.01. In both

a and b, the observation matrix and the source signal and the true support vector were

synthesized according to the precondition for applying statistical mechanics (Section

2.3.1). N = 500, α = a = 0.6, β = 0. Gaussian signal (±). In both the CIM and SA,

ri was given the source signal xi.
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in L0-RBCS. Here, hi is the local field given in Eq. (7), and 2λ is equal to η2, as described

in Section 2.1 and Appendix A. To improve the estimation accuracy, the threshold η

corresponding to λ needs to be set to a small finite value, as shown in Sections 2.3.3 and

3.1.2. However, when λ is small, the Monte Carlo algorithm cannot retrieve the support

vector until the temperature is low enough to allow the L0-regularization term to work

as a sparse bias. For the L0-regularization parameter of λ = 0.00125 corresponding to

η = 0.05, we selected the initial and the final temperature at time t = 0 and t = 105

(Monte Carlo step/N) (see Supplementary material). Except for the zero-temperature

case, we set the initial and final temperature to 0.02 and 0.00002, respectively.

In the experiment, 1000 samples of the observation matrix and source signal

and true support vector were randomly synthesized according to the precondition for

applying statistical mechanics (Section 2.3.1) under the Gaussian signal condition (±),

N = 500, α = a = 0.6 and β = 0. By sharing of the same random seed, the same samples

of the observation matrix and source signal and support vector could be used in different

conditions of the CIM and SA. ri was given the source signal xi. To measure the retrieval

quality, we used the direction cosine between the true support vector [ξ1, · · · , ξN ] and
the estimated one [σ1, · · · , σN ], which is defined as

∑N
i=1 ξiσi/

√

∑N
i=1 ξi

∑N
i=1 σi. The

direction cosine is 1 if the CIM (SA) perfectly retrieves the support vector.

First, we evaluated the temporal profiles of the support vector retrievals of the CIM

and SA under various pump-rate and temperature schedules. The left graph in Fig. 10a

shows the temporal change in the direction cosine between the true support vector and

the one estimated with the CIM (A2
s = 107, η = 0.05) for constant, linear rising, and

square rising schedules of the pump rate. In all cases, the pump rates in the final state

are 1.5. Each of the colored solid and dashed lines indicates the mean and standard

deviation of 1000 samples. In the case of the constant pump rate, the direction cosine

did not converge to 1 until t = 5 (time/photon lifetime), whereas in the cases of the

linear and square rising schedules, it converged to about 1 around t = 2. On the other

hand, the colored solid and dashed lines of the right graph for SA (λ = 0.00125) show

that the direction cosine converged to around 1 by t = 105(Monte Carlo step / N) for all

of the zero temperature, exponential, inverse linear, and inverse log cooling schedules.

Note that the profile of the direction cosine of the inverse log cooling schedule is almost

the same as that of the zero temperature case, because the temperature of the inverse

log cooling schedule rapidly approaches the final temperature under the condition of the

final time of t = 105 (Monte Carlo step / N). Furthermore, the standard deviation of

the direction cosine in all these cases was larger than those of the CIM.

Next, we compared the distribution of the direction cosines of the final state in

the CIM with those of SA under various cooling schedules. The upper left graph in

Fig. 10b shows the histogram of the final direction cosines of 1000 samples obtained

from the CIM for the square rising schedule of the pump rate, and the other graphs in

Fig. 10b show histograms of the final direction cosines of 1000 samples obtained from

SA for the zero temperature, exponential cooling, inverse linear cooling, and inverse log

cooling schedules. These graphs suggest that the proportion of the direction cosines
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close to 1 in the 1000 samples of the CIM is higher than those of SA. The two-sample

one-sided Kolmogorov-Smirnov test suggests that the histogram of the final direction

cosines of the CIM is significantly biased toward the right side compared with all of those

of SA (P-value < 0.01). Table 1 summarizes the P-values for various sparsenesses a and

compression ratios α. As shown in Table 1, the P-values for exponential, inverse linear

and inverse log cooling schedules are slightly larger than those of the zero temperature

in some cases. Therefore, the histograms of the final direction cosines for these cooling

schedules are slightly biased toward the right side compared with the zero temperature

in some cases. However, the histograms of the CIM are biased toward the right side

compared with those of these cooling schedules; in particular the bias of the CIM is

significant under conditions close to α = a (P-value< 0.05).

The above results thus demonstrate that the CIM outperformed SA at support

vector estimation.

Table 1. List of P-values of the two-sample one-sided Kolmogorov-Smirnov test for

checking whether the histogram of the final direction cosines of the CIM is significantly

biased toward the right side compared to those of SA (Alternative hypothesis). CIM

(p = 1.5(t/5)2) vs. SA (T = 0), CIM (p = 1.5(t/5)2) vs. SA (T = 0.02/ exp(t/τ)),

CIM (p = 1.5(t/5)2) vs. SA (T = 0.02/(1 + t/τ)) and CIM (p = 1.5(t/5)2) vs. SA

(T = 0.02/ log(e1+t/τ)). Each element of the table is a P-value for a certain sparseness

a and compression ratio α.

T = 0 T = 0.02/ exp(t/τ) T = 0.02/(1 + t/τ) T = 0.02/ log(e1 + t/τ)

α = 0.4 α = 0.6 α = 0.4 α = 0.6 α = 0.4 α = 0.6 α = 0.4 α = 0.6

a = 0.1 0.7206 0.6130 0.7466 0.5857 0.7466 0.5857 0.7206 0.6130

a = 0.2 0.3325 0.4025 0.1983 0.4526 0.1983 0.4526 0.3325 0.4272

a = 0.3 0.0798 0.0973 0.0469 0.1177 0.0420 0.1177 0.0973 0.0882

a = 0.4 0.0000 0.0333 0.0007 0.0374 0.0003 0.0420 0.0000 0.0296

a = 0.5 0.0000 0.0061 0.0000 0.0053 0.0000 0.0053 0.0000 0.0053

a = 0.6 0.0000 0.0000 0.0000 0.0002 0.0000 0.0002 0.0000 0.0001

4. Discussion

4.1. Summary and Conclusion

We proposed a quantum-classical hybrid system that performs CIM and CDP steps

alternately to optimize r and σ. To evaluate the performance of CIM L0-RBCS, we

introduced W-SDE as a model for a system consisting of N OPOs and a measurement-

feedback circuit. We obtained the MEs for CIM L0-RBCS from the W-SDE (13) and

simultaneous equations (11).

As shown in Figs. 4, 7c, and 8c and Supplementary Figs. 1, 5c and 6c, the

theoretical results obtained from the MEs were consistent with the numerical results of

Algorithm 1 regardless of whether observation noise existed in the observed signal y.



Compressed sensing with quantum-classical hybrid approach 30

In particular, the theoretical results in the limit A2
s → ∞ were in good agreement with

those of Algorithm 1 with A2
s = 107. Because A2

s = 107 is on the same order as A2
s in

the experimental CIMs [10, 11], we expect that the MEs (26)(27)(28) can be used to

evaluate real experimental CIMs.

In the case of no observation noise, we theoretically showed that the performance

of CIM L0-RBCS in principle approaches the threshold of L0-minimization-based CS

[59, 44] at high pump rates (see Fig. 5a and Supplementary Fig. 3b). From a

mathematical perspective, the threshold a = α is the condition when the rank of a

matrix composed of the column vectors of an observation matrix corresponding to the

non-zero elements of the source signal is full. Thus, it is impossible for any system to go

beyond this line mathematically. As described above, because the theoretical results in

the limit A2
s → ∞ are in good agreement with those of Algorithm 1 with A2

s = 107, we

expect that the theoretical performance limit of real experimental CIMs will be close to

this ideal limit.

In the case of observation noise, we theoretically showed that the RMSEs of CIM

L0-RBCS are lower than those of LASSO for almost all conditions in which LASSO

has an error less than 0.2 and thus that CIM L0-RBCS exceeds LASSO’s estimation

accuracy under the optimal threshold for each method (see Figs. 7a, 7b, 8a and 8b and

Supplementary Figs. 5a, 5b, 6a and 6b).

However, there is a problem regarding the basin of attraction. As numerically

demonstrated in Fig. 6 and Supplementary Figs. 4, when there is no observation noise,

Algorithm 1 cannot reach the theoretical performance limit if it starts from the practical

initial condition r = 0. However, even in such a situation, Algorithm 1 exceeds LASSO’s

estimation accuracy until the lower bound of the critical points of CIM L0-RBCS (Fig.

6 and Supplementary Fig. 4). On the other hand, when there is observation noise,

under the practical initial condition r = 0, Algorithm 1 gets very close to or achieves

the theoretical performance limit of the ME (see Figs. 7c and 8c and Supplementary

Figs. 5c and 6c).

Finally, we confirmed using realistic data that CIM L0-RBCS gave the most

accurate reconstruction compared with LASSO and L1-minimization-based CS (Fig.

9).

Therefore, we can conclude that the performance of CIM L0-RBCS in principle

approaches the theoretical limit of L0-minimization-based CS at high pump rates,

exceeds that of LASSO, and moreover in practical situations exceeds LASSO’s

estimation accuracy.

A detailed interpretation and discussion of these results is given below.

4.2. Effectiveness of CIM in support estimation

As shown in Fig. 10, the CIM outperformed SA in support estimation. In particular, as

shown in Table 1, its superiority was significant under conditions close to the critical-

point line α = a. Close to the critical-point line α = a, the energy landscape becomes
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more complicated. Therefore, this result indicates that the CIM can retrieve a support

vector more efficiently than SA, especially in situations where the energy landscape is

complicated near the critical point.

To improve the estimation accuracy of L0-RBCS, η corresponding to the L0-

regularization parameter λ needs to be set to a small finite value. However, when

λ is small, the Monte Carlo algorithm cannot retrieve the support vector until the

temperature is low enough to allow the L0-regularization term to work as a sparse bias.

As described in Section 3.3, there is no remarkable improvement in SA comparable to

the CIM. This result suggests that SA may not work well in such a situation where

thermal fluctuations must be small like this. On the other hand, the CIM searches for

the ground state on the basis of the minimum gain principle [8, 51], which is different

from thermal relaxation. Therefore, the results in Fig. 10 and Table 1 demonstrate that

the CIM is effective at solving a combinatorial optimization problem in such a situation

where the thermal fluctuation must be small.

4.3. Correctness of assumptions

To derive the MEs (23)(24)(25), we derived an approximate value for
〈

X̃(h̃, t)
〉

SDE
of

each OPO pulse by replacing the state variables in the second-order coefficient of the

power of the quantum noise with average values of the state variables (see Eq. (C.3)).

As shown in Figs. 4b, 7c, and 8c, the ME derived under this approximation has good

accuracy at the values of A2
s used in the actual CIM equipment. However, as shown in

Fig. 4a, some solutions of the ME did not match the numerical solutions of Algorithm

1 for smaller values of A2
s. Thus, this approximation is possible if the mutual injection

field is much larger than the noise in the steady state where the c-amplitude has grown.

4.4. Basin of attraction and its dependency on the threshold

To make the basin of attraction of Algorithm 1 wider, we heuristically introduced a

linear threshold attenuation in which the threshold η linearly decreases as the alternating

minimization proceeds. We confirmed that the basin of attraction widens as a result of

lowering η from a higher initial threshold ηinit to a lower terminal threshold ηend (see

Fig. 6 and Supplementary Fig. 4).

According to the definition of the injection field for each OPO pulse in Eq. (9), the

threshold η acts as an external field to give a negative bias for the OPO pulses to take

the down state. By initially giving a large negative external field, almost all of the OPO

pulses take the π-phase state, and thus, almost all of the {H(Xj)}j=1,···,N take zero in

the initial stage of the alternating minimization process. In the initial stage, the system

can easily reach the ground state under a strong negative bias because the phase space,

which consists of a small number of up-state OPO pulses, is simple. Then, through

the alternating minimization process, the system tracks gradual changes in the ground

state due to incremental increases in the number of up-state OPO pulses by gradually
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sweeping out a negative external field. Finally, the system achieves the ground state at

the terminal threshold ηend.

However, as demonstrated in Fig. 6b, when there is no observation noise, the

system fails to converge to the near-zero-RMSE solutions beyond the lower bound line

of the critical points. We suspect that there might be many quasi steady states beyond

the lower bound line, as in the spin-glass phase [70]; thus, the system might become

trapped in one of the quasi steady states.

On the other hand, when there is observation noise, as demonstrated in Figs. 7c

and 8c, the system converges to near-zero-RMSE solutions even nearby the critical

point when it starts from the practical initial condition r = 0. It was suggested that

the symmetries of the system allow for the creation of quasi steady states [71]. We

conjecture that observation noise could break the symmetries for quasi steady states.

4.5. Plan to improve CIM L0-RBCS

In this study, we used a W-SDE corresponding to the macroscopic model of MFB-

CIM proposed by [72, 73]. On the other hand, there is a microscopic model, called

the Gaussian approximation model, that provides a better approximation of the

measurement process [74]. Moreover, we should mention that more general quantum

models of the MFB-CIM without the Gaussian approximation have been derived for

both discrete time models [75] and continuous time models [76]. In future work, we

will need to use these more general quantum models to evaluate the performance of

CIM-L0-RBCS.

Furthermore, we will need to construct a full quantum system in which both the

support estimation and the signal estimation are implemented on the CIM. We expect

that due to the minimum gain principle, the full quantum system simulated with more

general quantum models could overcome the quasi-steady-state problem discussed above.
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Appendix A. Derivation of Eqs. (5)-(8)

The gradient of the Hamiltonian H with respect to each of σ and r is simply derived as

−∂H
∂ri

= − riσ
2
i

M
∑

µ=1

Aµ
i
2 + σihi, (A.1)

−∂H
∂σi

= − r2i σi

M
∑

µ=1

Aµ
i
2
+ rihi − λ, (A.2)
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hi = −
N
∑

j=1(6=i)

M
∑

µ=1

Aµ
i A

µ
j σjrj +

M
∑

µ=1

Aµ
i y

µ. (A.3)

Here, hi is the same as the local field defined in Eq. (7). Since r2i ≥ 0,
∑M

µ=1A
µ
i
2 > 0,

and hi in Eq. (A.3) does not include σi, Eq. (5) can be obtained from Eq. (A.2) at

− ∂H
∂σi

= 0 as follows.

H

(

r2i σi

M
∑

µ=1

Aµ
i
2

)

= σi = H (rihi − λ) .

Here, H(X) is the Heaviside step function taking 0 for X ≤ 0 or +1 for X > 0. If

ri = 0, the sign of rihi − λ is negative and r2i σi

∑M
µ=1 A

µ
i
2 = 0. Thus, σi consistently

becomes zero if ri = 0. σi takes either 0 or 1 depending on the sign of rihi − λ.

Furthermore, since σ2
i = σi, the following equation can be obtained from Eq. (A.1)

at −∂H
∂ri

= 0.

riσi

M
∑

µ=1

Aµ
i
2 = σihi. (A.4)

Note that ri is indefinite in Eq. (A.4) when σi = 0. Because riσi = 0 holds if σi = 0, ri
can be safely set to zero when σi = 0. To satisfy ri = 0 if σi = 0, we modify Eq. (A.4)

to Eq. (6):

ri

M
∑

µ=1

Aµ
i
2
= σihi.

In this study, we assume that
∑M

µ=1A
µ
i
2
= 1 is satisfied. This assumption does not lose

any generality because it is possible to normalize the observation matrix A to satisfy
∑M

µ=1 A
µ
i
2
= 1 for any case. Under this assumption, the following equation is obtained

from Eq. (6).

ri = σihi. (A.5)

Before eliminating ri with the following manipulation, one should notice that ri is a

solution in the steady-state with respect to ri satisfying −∂H
∂ri

= 0. hi in Eq. (A.3) does

not include σi. Thus, ri is uniquely determined by σi and hi. Then, substituting Eq.

(A.5) into Eq. (5), we obtain

σi = H
(

σih
2
i − λ

)

. (A.6)

Equation (A.6) is a self-consistent equation to determine the value of σi. Figure A1

shows a schematic Maxwell rule to solve the self-consistent equation (A.6) for σi. As

shown, there are two stable fixed points (0,−λ) and (1, h2
i −λ) corresponding to the two

crossing points of the functions Y = h2
iσi − λ and Y = H−1(σi). The two areas S0 and

S1 enclosed by Y = h2
iσi − λ and Y = H−1(σi) correspond to the depth of microscopic

energy at two stable fixed points (σi, Y ) = (0,−λ) and (1, h2
i − λ). According to the

Maxwell rule, we select the stable fixed point with the largest enclosed area. Which of

S0 and S1 is larger is determined by whether λ/h2
i is larger or smaller than 1/2.
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If the source signal is signed (χ = ±), a stationary point of Eq. (A.6) is determined

by the following equation.

σi =

{

1 hi >
√
2λ or hi < −

√
2λ

0 otherwise
. (A.7)

Note that if the source signal is signed (χ = ±), σi = 1 holds for both the positive side

(hi >
√
2λ) and the negative side (hi < −

√
2λ). On the other hand, if the source signal

is non-negative (χ = +), σi = 1 must hold for only the positive side (hi >
√
2λ) to keep

ri non-negative. In this case, a stationary point of Eq. (A.6) is determined by

σi =

{

1 hi >
√
2λ

0 otherwise
. (A.8)

Eq. (8) allows us to write a unified equation for Eqs. (A.7) and (A.8):

σi = H
(

Fχ(hi)−
√
2λ
)

,

Fχ(h) =

{

h (χ = +)

|h| (χ = ±)
.

Finally, we confirm that the Hamiltonian H decreases at each iteration of a sequential

update rule based on Eq. (8). The change in H due to the i-th Potts spin flipping σi to

σ′
i is expressed by the following equation with substitution of Eq. (A.5).

H(σ1, · · · , σ′
i, · · · , σN)−H(σ1, · · · , σi, · · · , σN )

= −1

2
(σ′

i − σ)(h2
i − 2λ). (A.9)

Substituting σ′
i = H

(

Fχ(hi)−
√
2λ
)

into (A.9) yields

H(σ1, · · · , σ′
i, · · · , σN)−H(σ1, · · · , σi, · · · , σN )

= −1

2

(

H
(

Fχ(hi)−
√
2λ
)

− σ
)

(h2
i − 2λ). (A.10)

The case of χ = ±
If σi = 0 and either hi >

√
2λ or hi < −

√
2λ, H(σ1, · · · , σ′

i, · · · , σN ) −
H(σ1, · · · , σi, · · · , σN ) = −1/2(h2

i − 2λ) < 0. If σi = 1 and −
√
2λ ≤ hi ≤

√
2λ,

H(σ1, · · · , σ′
i, · · · , σN ) − H(σ1, · · · , σi, · · · , σN) = 1/2(h2

i − 2λ) ≤ 0. If σ′
i = σi,

H(σ1, · · · , σ′
i, · · · , σN )−H(σ1, · · · , σi, · · · , σN) = 0.

The case of χ = +

If σi = 0 and hi >
√
2λ,H(σ1, · · · , σ′

i, · · · , σN)−H(σ1, · · · , σi, · · · , σN ) = −1/2(h2
i−2λ) <

0. If σi = 1 and −
√
2λ ≤ hi ≤

√
2λ, H(σ1, · · · , σ′

i, · · · , σN) − H(σ1, · · · , σi, · · · , σN ) =

1/2(h2
i − 2λ) ≤ 0. If σ′

i = σi, H(σ1, · · · , σ′
i, · · · , σN) − H(σ1, · · · , σi, · · · , σN) = 0.

The growth condition for H: If σi = 1 and hi < −
√
2λ, H(σ1, · · · , σ′

i, · · · , σN) −
H(σ1, · · · , σi, · · · , σN ) = 1/2(h2

i − 2λ) > 0. Note that if σi = 1, hi = ri ≥ 0 holds

because ri = σihi is satisfied and ri is non-negative. Thus, the growth condition for H
cannot exist.

In conclusion, the Hamiltonian H decreases monotonically at each iteration of the

sequential update rule for both χ = ± and χ = +.
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Figure A1. Selection of a stable fixed point according to the Maxwell rule

Appendix B. Derivation of W-SDE for CIM

As shown in Fig. 2, the pump pulses are injected into the main ring cavity through

a second harmonic generation (SHG) crystal. A periodically poled lithium niobate

(PPLN) waveguide is a highly efficient nonlinear medium for optical parametric

oscillation. Suppose that the amplitude of the pump field injected into the main cavity

is ǫ and the parametric coupling constant of the PPLN waveguide between the signal

field and the pump field is κ. Then, the pumping Hamiltonian is Ĥ1 = i~ǫ(â†p − âp)

and the parametric interaction Hamiltonian is Ĥ2 = i~κ/2(â†2s âp − â†pâ
2
s). Here, âp

and âs are the annihilation operators for the intra-cavity pump and signal fields. If

the round-trip time of the ring cavity is correctly adjusted to N times the pump pulse

interval, N independent and identical OPO pulses are simultaneously generated inside

the cavity. The photon annihilation and creation operators for the j-th OPO signal

pulse are denoted by âj and â†j. The intra-cavity pump field and signal field have loss

rates γp and γs, respectively. If γp ≫ γs, the pump field can be eliminated by invoking

the slaving principle: the following master equation of the density operator for a solitary

j-th OPO signal pulse is obtained by adiabatic elimination of the pump mode [77, 78],

∂ρ̂OPO

∂t
= − i~

S

2

N
∑

j=1

[â†2j − â2j , ρ̂OPO]

+ γs

N
∑

j=1

(

2âjρ̂OPOâ
†
j − â†j âjρ̂OPO − ρ̂OPOâ

†
j âj

)
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+
B

2

N
∑

j=1

(

2â2j ρ̂OPOâ
†2
j − â†2j â2j ρ̂OPO − ρ̂OPOâ

†2
j â2j

)

, (B.1)

where S = ǫκ/γp and B = κ2/(2γp) are the linear parametric gain coefficient and two

photon absorption (or back conversion) rate, respectively. [x̂, ŷ] denotes the bosonic

commutator.

Next, let us examine the measurement-feedback circuit shown in Fig. 2. The

circuit is connected to the main cavity by extraction and injection couplers with

reflection coefficients Rex = jex∆t and Rin = jin∆t, where jex and jin are coarse-

grained out-coupling and in-coupling constants and ∆t is the cavity round trip time.

When B/γs << 1 and vacuum fluctuations are incident on the open ports of the

extraction and injection couplers, the measurement-feedback circuit can be described

with a Gaussian quantum model [79, 74]. The master equation consists of a linear loss

term, measurement-induced state reduction term, and coherent feedback signal injection

term (see Eqs. (12)(13)(14) in ref. [74]).

The Fokker-Planck equation is derived using the Wigner W (α) representation of

the density operator ρ̂ in the master equations, and we arrive at the following truncated

Wigner stochastic differential equation (W-SDE) by applying Ito’s rule [80, 74],

dαi

dt
= − (γs + j)αi + Sα∗

i − B|αi|2αi

+ jinf
sig
i +

√

γs
2

+
j

2
+B|αi|2υi, (i = 1, · · · , N) (B.2)

where j = jex + jin, αi is the complex Wigner amplitude, and υi is the c-number noise

amplitude satisfying 〈υi(t)〉 = 0, 〈υ∗
i (t)υj(t

′)〉 = 2δijδ(t− t′).

Then, by introducing a saturation parameter As =
√

2γp(γs + j)/κ2 and applying

the following scale transformation: αi/As = ci + isi, t(γs + j) = t, p = S/(γs + j) and

Kjin/As(γs + j) = K̃, we obtain Eq. (13).

Appendix C. Mean-field behavior of OPO pulses and CDP

We approximately calculate the conditional expectations of X̃(h̃, t), G̃(h̃, t) and G̃(h̃, t)2

given the pure local field h̃, which are denoted by
〈

X̃(h̃, t)
〉

SDE
,
〈

G̃(h̃, t)
〉

SDE
and

〈

G̃(h̃, t)2
〉

SDE
[55].

Under the premise that the local field can be separated into the pure local field and

the ORT (Eq. (17)) by SCSNA [53, 24, 54], substituting Eq. (17) into Eq. (11) and

because 1
M

∑M
µ=1 (A

µ
i )

2
= 1, we can write ri as

ri =

{

0 ci ≤ 0
h̃i

1−Γ
ci > 0

. (C.1)

Furthermore, substituting Eqs. (17) and (C.1) into the W-SDE (13) gives:

dci
dt

= (−1 + p− c2i − s2i )ci +
1

As

√

c2i + s2i + 1/2Wi,1
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+ K̃

(

Fχ

(

h̃i + h̃i
ΓH(ci)

1− Γ

)

− η

)

,

dsi
dt

= (−1− p− c2i − s2i )si +
1

As

√

c2i + s2i + 1/2Wi,2. (i = 1, · · · , N) (C.2)

Equation (C.2) of the i-th OPO pulse only depends on the pure local fields h̃i, which are

statistically independent of each other in the steady state. The W-SDE (C.2) can be

regarded as describing N independent one-body OPO pulses in the steady state. Thus,

it is not necessary to solve the W-SDE (C.2) simultaneously.

Since the steady-state solution of Eq. (C.2) depends only on the value of the pure

local field, the site index i in Eq. (C.2) can be deleted. It is difficult to solve Eq. (C.2)

analytically even after the N -body system has been reduced to a one-body system. To

obtain a mathematically tractable form, we replace the state variables in the second-

order coefficient of the Kramers-Moyal expansion [80] (representing the power of the

quantum noise) with the average values of these state variables [55]:

dc

dt
= (−1 + p− c2 − s2)c+

1

As

√

〈c2〉+ 〈s2〉+ 1/2W1

+ K̃

(

Fχ

(

h̃+ h̃
ΓH(c)

1− Γ

)

− η

)

,

ds

dt
= (−1− p− c2 − s2)s+

1

As

√

〈c2〉+ 〈s2〉+ 1/2W2. (C.3)

From Eq. (C.3), we can derive the following equations to determine the approximate

value of
〈

X̃(h̃, t)
〉

SDE
for a single OPO pulse [55]:

〈

X̃(h̃, t)
〉

SDE
=

∫ +∞

−∞

dc

∫ +∞

−∞

dsH(c)f(c, s|h̃),

f(c, s|h̃) ∝ exp





2A2
s

(

cK̃
(

Fχ

(

h̃ + h̃ΓH(c)
1−Γ

)

− η
)

− V (c, s)
)

Ξc(h̃) + Ξs(h̃) + 0.5



 ,

V (c, s) =
1

2
(1− p)c2 +

1

2
(1 + p)s2 +

1

2
c2s2 +

1

4
c4 +

1

4
s4,

where V (c, s) is the potential appearing in the CIM-ferromagnetic and the CIM-finite

loading Hopfield models [55]. Ξc and Ξs are parameters for calculating
〈

X̃(h̃, t)
〉

SDE
,

which satisfy

Ξc(h̃) =

∫ +∞

−∞

dc

∫ +∞

−∞

dsc2f(c, s|h̃),

Ξs(h̃) =

∫ +∞

−∞

dc

∫ +∞

−∞

dss2f(c, s|h̃).

Ξc and Ξs are equal to 〈c2〉 and 〈s2〉, and by giving h̃ and Γ, they can be self-consistently

determined from the above equation.

Similarly, from Eq. (C.1),
〈

G̃(h̃, t)
〉

SDE
and

〈

G̃(h̃, t)2
〉

SDE
can be obtained as
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follows:
〈

G̃(h̃, t)
〉

SDE
=

h̃

1− Γ

〈

X̃(h̃, t)
〉

SDE
,

〈

G̃(h̃, t)2
〉

SDE
=

h̃2

(1− Γ)2

〈

X̃(h̃, t)
〉

SDE
.

Appendix D. Details of SCSNA for the whole hybrid system

Under the precondition described in Section 2.3.1, we separate the local field into the

pure local field and the ORT (Eq. (17)) with SCSNA [53, 24, 54, 56, 57], and reduce the

N -body system composed of N mutually coupled OPO pulses to an effective one-body

system. After that, we derive the ME for the whole hybrid system.

Let us start by introducing the following parameters.

gµ =
1

N

N
∑

j=1

Aµ
j (G(hj , t)− ξjxj)−

√

α/Nnµ, (D.1)

Below, we assume that gµ = O(1/
√
N) (µ = 1, · · · ,M) is satisfied, because, under the

precondition, the correlation between Aµ
j and G(hj , t) − ξjxj is O(1/

√
N) for any µ if

the reconstruction succeeds.

Substituting Eq. (D.1) into Eq. (16) gives

hi = − 1

α

M
∑

µ=1

Aµ
i g

µ + riH(ci), (D.2)

where the first term is the cross-talk noise part, and the second term is introduced to

subtract the direct self-coupling term from the local field hi because Eq. (16) does not

contain the direct self-coupling.

Next, we split the local field into a signal term, independent Gaussian noise, and

the ORT. gµ, as defined in Eq. (D.1), recursively contains Aµ
j g

µ in G(hj, t), so it is a

factor causing correlation between OPO pulses. Because gµ = O(1/
√
N), we perform

the following expansion on Eq. (D.1):

gµ =
1

N

N
∑

j=1

Aµ
j (G(h

(µ)
j , t)− ξjxj)−

√

α

N
nµ − a

α
gµU (µ), (D.3)

where h
(µ)
i is the cavity field [81] and U (µ) is a macroscopic parameter called the

susceptibility, which are given by

h
(µ)
i = − 1

α

M
∑

ν=1(6=µ)

Aν
i g

ν + riH(ci), (D.4)

U (µ) =
1

aN

N
∑

j=1

∂G(h
(µ)
j , t)

∂h
(µ)
j

, (D.5)

The cavity field h
(µ)
j does not contain Aµ

j g
µ, so G(h

(µ)
j , t) is uncorrelated with Aµ

j and

U (µ) is also uncorrelated with Aµ
j . The terms that cause the correlation between the
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OPO pulses are extracted by performing a first-order Taylor expansion around gµ = 0

and these extracted terms form the third term on the right side of Eq. (D.3).

From Eq. (D.3), we redefine gµ on the basis of the cavity fields h
(µ)
i (i = 1, · · · , N)

as follows:

gµ =
α

α + aU (µ)

(

1

N

N
∑

j=1

Aµ
j (G(h

(µ)
j , t)− ξjxj)−

√

α

N
nµ

)

, (D.6)

The terms causing the correlation between OPO pulses in Eq. (D.1) are converted into

the scale coefficient α/(α+ aU (µ)).

Substituting Eq. (D.6) into the crosstalk noise in Eq. (D.2), we split up the local

field into three terms, as follows:

hi =

〈

αxiξi
α + aU (µ)

〉

µ

+ Zi +

〈

aU (µ)

α + aU (µ)

〉

µ

riH(ci), (D.7)

Zi = − 1

N

M
∑

µ=1

N
∑

j=1(6=i)

Aµ
i A

µ
j (G(h

(µ)
j , t)− ξjxj)

α+ aU (µ)
+

√

α

N

M
∑

µ=1

Aµ
i n

µ

α + aU (µ)
, (D.8)

where the first term is the signal term, Zi is Gaussian random noise defined by Eq. (D.8),

and the third term is the self-coupling term. Here, 〈·〉µ denotes
〈

x(µ)
〉

µ
= 1

M

∑M
µ=1 x

(µ).

These three terms are obtained under the conditions 〈Aµ
i 〉 = 0 and

〈

Aµ
i A

ν
j

〉

= δijδµν ,

and G(h
(µ)
i , t) and U (µ) are uncorrelated with Aµ

i . Moreover, the third term is obtained

under the approximation
〈

G(h
(µ)
i , t)

〉

µ
= riH(ci). From the central limit theorem, Zi

becomes Gaussian random noise in the thermodynamic limit. The average of Zi and

the covariance between Zi and Zj are

〈Zi〉 = 0,

〈ZiZj〉 = δijα
2

〈

a
α
(Q(µ) − 2R(µ) + 〈x2〉x) + β2

(α + aU (µ))2

〉

µ

,

where R(µ) and Q(µ) are macroscopic parameters that are respectively called the overlap

and the mean square magnetization and are given by

R(µ) =
1

aN

N
∑

j=1

xjξjG(h
(µ)
j , t), (D.9)

Q(µ) =
1

aN

N
∑

j=1

G(h
(µ)
j , t)2. (D.10)

Because Zi is statistically independent of Zj when i 6= j, the first and second terms

in Eq. (D.7) are statistically independent of those of other sites. The third term is the

difference between the self-coupling term in the crosstalk noise rescaled by α/(α+aU (µ))

and the original one (the second term of R.H.S in Eq. (D.2)), and it represents self-

feedback via other OPO pulses. Therefore, the first and second terms are the pure local

field and the third term is the ORT. By comparing Eqs. (17) and (D.7), h̃i and Γ are
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determined as follows:

h̃i =

〈

αxiξi
α + aUµ

〉

µ

+ Zi, Γ =

〈

aUµ

α + aUµ

〉

µ

.

As explained in Appendix C, substituting Eq. (17) into the W-SDE (13) reduces the

N -body system to an effective one-body system. The W-SDE (C.2) can be regarded as

N independent equations. The i-th independent equation in the W-SDE (C.2) implies

that H(ci) is a stochastic variable depending on the pure local field h̃i and time t in the

steady state. Thus, X(hi, t) and G(hi, t) can be redefined as X̃(h̃i, t) and G̃(h̃i, t), as

shown in Eq. (18):

H(ci) = X̃(h̃i, t), ri = G̃(h̃i, t) =
1

1− Γ
h̃iX̃(h̃i, t).

Through the manipulations in Eqs. (D.3) and (D.6), the pure local field and the ORT

are defined on the cavity field. In the thermodynamic limit (N → ∞), the cavity field

can be consistently replaced with the pure local field and the ORT, and G(h
(µ)
i , t) in Eqs.

(D.9) (D.10) (D.5) can be safely replaced with G̃(h̃i, t). As a result of this replacement,

the cavity indexes (µ) of R(µ), Q(µ), and U (µ) become negligible, and these macroscopic

parameters are redefined with Eqs. (20), (21) and (22):

R =
1

aN

N
∑

j=1

xjξjG̃(h̃i, t),

Q =
1

aN

N
∑

j=1

G̃(h̃i, t)
2,

U =
1

aN

N
∑

j=1

∂G̃(h̃j , t)

∂h̃j

∂h̃j

∂hj

,

where U expresses the average sensitivity of G̃(h̃i, t) to the bare local field hi using the

chain rule because of the definition of U (µ) in Eq. (D.5).

Because the pure local fields are independent of each other, the site averages in Eqs.

(20)(21)(22) can be replaced with the averages of
〈

G̃(h̃, t)
〉

SDE
and

〈

G̃(h̃, t)2
〉

SDE
with

respect to the Gaussian random noise Z and the source signal xξ. The replacement for

U can be achieved by integration by parts. Finally, we obtain the MEs (23)(24)(25) for

finite As and the MEs (26)(27)(28) for infinite As in Section 2.3.2.
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