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Materials and Methods

Experimental Setup Details

The high-level schematic of our experimental setup (Fig. 1) shows a 1560-nm mode-locked

fiber laser with a pulse-repetition period of Trep = 10 ns being frequency-doubled by a second-

harmonic-generation (SHG) stage, to produce 780-nm pulses that synchronously pump a periodically-

poled lithium niobate (PPLN) waveguide inside a fiber-ring cavity. The cavity and PPLN non-

linear medium together form a degenerate optical parametric oscillator (DOPO). The fiber-ring

cavity is approximately 330 meters long, and each round trip contains exactly 160 pulses. In

the absence of coupling between the pulses being introduced, this system results in the creation

of 160 independent, time-division-multiplexed pulsed OPOs (18). The roundtrip time, i.e., the

time for a single pulse in the cavity to circulate exactly once, is Trt = 160×Trep = 1.6 µs. Each

OPO pulse represents a single spin in the Ising machine. To implement the Ising Hamiltonian,
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we need to introduce couplings between the pulses. Our scheme requires only a single delay

line and two optical modulators, independent of the number of spins, and is based on a real-

time measurement-feedback system to electronically reproduce optical feedback signals to be

injected into the cavity that arbitrarily couple the OPO pulses (20). A homodyne-measurement

stage measures the in-phase component ci of each OPO pulse; a feedback-calculation stage uses

a field-programmable gate array (FPGA) to compute a feedback signal
∑

j Jijcj using the OPO

pulse measurement results from the previous roundtrip; and an injection stage creates the opti-

cal feedback signal by phase and intensity modulation of local oscillator pulses, and injects it

into the cavity.

Fig. S1 illustrates the action of the measurement-feedback subsystem. Although the cavity

contains 160 pulses, only 100 of them are used for computation; the remaining 60 pulses are

dummy pulses. The in-phase component of each of the first 100 pulses is measured, and these

measurement results, ci (i = 1, . . . , 100), are used to compute the feedback signal to be applied

to the pulses in the next roundtrip. For example, the feedback applied to OPO 1 is proportional

to
∑N=100

j=1 J1jcj , where Jij are the spin-spin interaction terms that define the Ising problem

to be solved. The quantity
∑N=100

j=1 J1jcj is real-valued, and may be negative or positive. Its

sign is used to determine whether the phase modulator in the injection path applies a 0 or a π

phase shift, and the amplitude of this feedback term is used as the control signal of the inten-

sity modulator. We note that the feedback calculation requires performing an N -dimensional

vector-vector dot product every repetition period Trep, which is 10 ns in our system. To imple-

ment an N -spin Ising problem, the FPGA needs to perform a calculation comprising approx-

imately 2N arithmetic operations every Trep. In contrast to all-optical Ising machines (17),

which require 2(N −1) distinct physical modulators to implement arbitrary Ising problems, the

measurement-feedback-based approach trades off optical component resources with electronic
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circuit resources, and requires only 2 optical modulators for feedback, regardless of the problem

sizeN . We note that modern FPGAs with> 12, 000 multipliers on a single chip exist, therefore

it should be feasible to construct feedback circuits for Ising machines with N > 104 spins using

current technology.

Fig. S2 shows a detailed schematic of the experimental setup. The laser is a MenloSystems

C-Fiber femtosecond Erbium laser with 90-fs pulse width and a 100-MHz repetition rate. The

laser output is filtered using two Agiltron fiber bandpass filters, and this light is amplified using

a PriTel EDFA. There are three different phase-stabilization control loops in the setup, where

each PID controller is a TEM Messtechnik LaseLock. The cavity length is stabilized via mea-

surement of the OPO pulse amplitude. The local oscillator (LO) path to the homodyne detector

is stabilized via readout of one of the two photodetectors. The injection path is stabilized via

readout of the interference signal on the free port of the injection fiber beamsplitter.

The OPO pump is generated via Second Harmonic Generation in a Covesion MgO:PPLN

crystal, mounted in a Covesion PV40 oven. A Covesion PV40 oven is also used to control the

temperature of the custom PPLN waveguide that forms part of the OPO. All electro-optic mod-

ulators are also based on LiNbO3, and were obtained from EOSPACE.

The OPO is operated in the degenerate regime (i.e., the signal and idler wavelengths are

identical). It has a threshold (when the injection port is blocked) Pth ≈ 210 µW. This value

drifts between 200 µW and 215 µW on a timescale of hours to days.

The homodyne balanced photodetector is a Thorlabs PDB480C-AC with 1.6-GHz band-

width. The FPGA module is a BEEcube miniBEE (containing one Xilinx Virtex 6 SX475T
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chip, clocked at 200 MHz) with an FMC101 ADC/DAC board (containing one Maxim 19692

12-bit 2.3-GSa/sec DAC and one TI ADS 12-bit 1-GSa/sec ADC, both clocked at 800 MHz).

The reason we have 60 dummy pulses in the cavity containing 160 pulses is so that the FPGA

feedback signal has time to propagate so that it can be applied to the next roundtrip, with no

further delay.

Supplementary Text

Further Discussion of Experimental Results

In Fig. 4A, we note that there is little variation in the success probabilities for each graph size,

typically less than a factor of two. The probability of obtaining a ground state decays expo-

nentially with graph size, falling to an average of 1.4 ± 0.70% when N = 100. However, we

can also consider approximate solutions, and there is a very strong dependence of the success

probability on the desired accuracy of the solution: the probability of finding a solution with a

95% or higher cut value of the global optimum in a single run is still on average greater than

50% for N = 100, and solutions with accuracy of at least 90% occur with 100% probability for

N = 100.

In Fig. 4E, we can see that very sparse graphs are easily solved: those with |E| = 50 edges

(d ≈ 0.01) have an average success probability of greater than 40%, even when requiring a

solution accuracy of 100%. For solution accuracies of up to 99%, the machine is able to find

answers for graphs of essentially any density with reasonable success probability. The success

probabilities for ≥ 90%-density graphs can be even higher, and are artificially reduced in this

study due to the limitations of the laser control in the present experimental setup (see the Nu-

merical Calculations section).
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In Figs. 2, 3 and 4, we have presented the results from the investigation of several thousand

problem instances ranging in size from N = 8 to N = 100 spins. We started off by showing

that our system is able to solve every possible cubic graph instance with N = 16 with success

probability > 20%. We showed several scaling results for cubic graphs, most important of

which is that high-quality approximate solutions can be obtained with computation times that

appear to scale favorably, and there is a smooth tradeoff between total computation time and the

accuracy of the solution. For random (non-cubic) graphs, in the vast majority of cases we were

able to obtain a ground state solution, and otherwise an approximate solution with high proba-

bility. The sampling behavior we observed, yielding approximate solutions, is suggestive that

measurement-feedback-based OPO Ising machines may also find a role as physical Boltzmann

samplers (31, 32).

Benchmarking relatively small Ising problem instances is fraught with difficulty (12), and

it is not even particularly obvious what benchmarks are appropriate in any given situation. We

have not attempted to perform a systematic comparison of our experiments with classical so-

lution methods in this paper (see the accompanying paper by Inagaki et al.). Nevertheless it is

interesting to highlight a few data points. The BiqMac MAX-CUT solver (33) is a leading clas-

sical exact solver, and it took over 1, 000 sec (on the official BiqMac server with an Intel Xeon

E5-2630 2.4-GHz CPU) to solve some of the N = 100 random graphs with d < 0.5 in Fig. 4E,

whereas the computing time for the OPO Ising machine was < 50 ms to find an exact solution

with 99% probability. This OPO-Ising-machine computation time does not include the time to

transfer data into or out of the FPGA, nor to stabilize the optical setup, and only represents the

time taken during the actual processing that the machine performs, but nevertheless this result

suggests that the machine is already doing something computationally non-trivial. For practical
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purposes, it is more appropriate to compare a classical heuristic solver against the OPO Ising

machine, rather than an exact solver. The best heuristic MAX-CUT solver we are aware of (at

least for problems with N ≤ 100) is Breakout Local Search (BLS) (34). BLS typically finds

ground-state solutions for N = 100 graphs within a few hundred milliseconds (on an Intel Core

i7-4510U 2.6-GHz CPU), but we observed that in approximately one out of every five runs it

takes longer than one second to return a good solution. In terms of only the computation time

(not the wall-clock time), our machine outperforms BLS in these special cases. Even for typi-

cal runs of BLS on N = 100 instances, the OPO Ising machine’s computation time compares

favorably. However, if the overhead from other contributions to the wall-clock time, such as

data transfer, are considered, then an OPO Ising machine will likely need to handle problems

larger thanN = 100 in order to be competitive with, or offer a definitive performance advantage

over, the best classical heuristic solvers. For example, there are many benchmark problems with

N = 800 vertices that BLS requires tens-to-hundreds of seconds to solve (34), so a speedup on

instances of this size may be possible even when large overheads are taken into account.

In the case of recent experimental investigations of quantum annealers, there has been

controversy about the operating regime and mechanism (11, 13, 35), and about whether the

class of machines being considered has already delivered a speedup or will ever deliver a

speedup (12,36–42). Competition between various groups trying to find evidence of speedup on

D-Wave quantum annealers and groups designing or modifying classical solvers to perform even

better has been underway for several years. The ensuing conversations have helped to define

standards for how to measure speedup of combinatorial optimizations on non-von-Neumann-

architecture machines, but despite these years of effort, the central questions about the promise

of quantum annealers remain open. We believe that the results in our paper indicate that coher-

ent Ising machines merit further investigation as accelerators of combinatorial optimizations,
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and we look forward to interaction with the community to try to fully understand the nature and

capability of this class of optimization processor. Rigorous comparisons with the best classical

solvers, and as appropriate with quantum annealers and other non-classical approaches, will be

crucial future work as we increase the size of the problems that coherent Ising machines can

solve.

Numerical Calculations

Several numerical models have been developed to understand the operation of networks of cou-

pled OPOs (17, 20, 43, 44). In this section we summarize the model used in Ref. (20), and

present results of simulations showing that this model fairly accurately captures the behavior of

our experimental system.

Model setup The behavior of a coherent Ising machine can be modeled as c-number stochas-

tic differential equations governing the complex amplitude (cj, sj) of each DOPO:

dcj = [(−1 + p− c2
j − s2

j)cj + ξ(t)
∑
i

Jij c̃i]dt+
1

As

√
c2
j + s2

j +
1

2
dWcj , (1)

dsj = (−1− p− c2
j − s2

j)sjdt+
1

As

√
c2
j + s2

j +
1

2
dWsj . (2)

Here, p is the pump rate, and is normalized to 1 at threshold; ξ(t) is the time-dependent coupling

coefficient; Jij are the entries of the J matrix specifying the problem instance; As is a saturation

parameter (corresponding to the steady-state amplitude), and c̃i denotes the measured in-phase

signal amplitudes used in the feedback calculations.

In our simulations, the OPO gain in the PPLN waveguide, the out-coupling loss in the fiber
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beamsplitter for the measurement subsystem, and the out-coupling loss at the injection port are

taken into account as follows:

dcj = [(p− c2
j − s2

j)cj] dt+
1

As

√
c2
j + s2

j +
1

2
dWcj , (3)

cj(t) 7→
√
1− Tmescj(t) +

√
Tmes

fj
As

, (4)

cj(t) 7→
√
1− Tinjcj(t) +

√
Tinjξ(t)

∑
i

Jij c̃i, (5)

where Tmes and Tinj are the transmittances of the measurement and injection port beamsplitters

respectively, and fj is vacuum (quantum) noise added from the open port of the measurement

beamsplitter. We assume a pump rate p = 0.88 and coupling coefficient ξ(t) = −0.001t, based

on estimates from the experiments.

Simulation results Fig. S3, A and B, shows the in-phase amplitude of the OPOs and the

cut value as a function of the cavity roundtrip number, respectively, when solving the Möbius

Ladder graph with N = 16. These are remarkably consistent with the data obtained in the

experiment, shown in Fig. 2, B and C.

We also simulated solving MAX-CUT on all |V | = N = 16 cubic graphs (4060 instances),

just as was done in the experiments. The number of roundtrips was set to Nrt = 300 and we

performed 100 runs for each instance. Fig. S4A shows a histogram of the success probabilities

for finding a ground state in a single run. In Fig. S4B, the same data are plotted to show the cor-

relation of the success probability for each instance. Pearson’s correlation coefficient between

the simulation and experimental data is r = 0.80. The simulation captures the experimental

behavior reasonably accurately. At least part of the discrepancy between the simulation and

experimental results is due to the fact that the phase stabilization in the experimental setup is
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imperfect. Improving the phase stability increases the success probabilities, which brings the

experimental data into closer agreement with the simulation data.

The final simulation is for random graphs with N = 100 vertices. Fig. S5 shows how the

success probability changes as a function of the pump power, and can be compared to Fig. 4E.

In our experiments the pump power was restricted to pcomp < 1.0 · pth, i.e., p < 1.0 in the

normalized simulation notation, due to limitations in our EOM control. This figure shows that

even better experimental results are expected for dense graphs if the system is modified to allow

pcomp > 1.0 ·pth. In particular, when pcomp = 1.2 ·pth, nearly every run on a dense graph results

in a solution with 99% accuracy or higher.

Computational Mechanism Intuition

In this section we summarize some intuition for a quantum interpretation of the mechanism by

which coherent Ising machines may solve optimization problems. This summary is based on

Refs. (20, 43).

Four computational steps Let us assume the pumping power to the DOPO network is grad-

ually and linearly increased from below to above the oscillation threshold. Immediately after

the pump power is switched on, each DOPO is at far below the oscillation threshold, where the

DOPO field is in an independent squeezed vacuum state, which can be expressed as a superpo-

sition of the 0-phase state and the π-phase state:

|ψ0〉 =
1

2
(|0−phase〉+ |π−phase〉), (6)
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where

|0−phase〉 = C0|0〉+ C1|1〉+ C2|2〉+ C3|3〉+ · · · , (7)

|π−phase〉 = C0|0〉 − C1|1〉+ C2|2〉 − C3|3〉+ · · · . (8)

Here the probability amplitudes of even-photon-number states |2n〉 are given by

C2n = [1− tanh2(r)]1/4

√
(2n)!

2nn!
[tanh(r)]n, (9)

and r is the squeezing parameter (45). Note that the |0−phase〉 and |π−phase〉 states resemble

the Pegg-Barnett phase eigenstates (46) but they are not orthogonal to each other, because the

probability amplitudes C2n are not constant but monotonically decrease with n. Nevertheless,

N DOPO fields in independent squeezed vacuum states can represent 2N solution states simul-

taneously. A quantum parallel search for a solution state is implemented in this way.

Soon after turning on the pump, the initially-constant 2N probability amplitudes for all

spin eigenstates are either amplified or deamplified, depending on whether the mutual coupling

among DOPO fields (Ising spin coupling) imposes either constructive interference or destruc-

tive interference. The probability amplitudes of solution states (ground states of the problem

Hamiltonian) are amplified, while the probability amplitudes of non-solution states are deam-

plified. This step can be called quantum filtering, during which the average photon number per

DOPO is still smaller than one and the DOPO phase transition has no contribution yet.

When the pumping power approaches the DOPO threshold, one particular ground state is

selected as the oscillation mode while all the other ground states are suppressed. This is a

spontaneous symmetry breaking process associated with the second-order phase transition. The

amplified probability amplitudes of the ground states in the quantum filtering stage play an es-
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sential role as the preparation step toward the successful state selection in this decision-making

process. It is at this point that the quantum coherence between the degenerate ground states

starts decreasing and the density operator approaches a statistical mixture.

Finally, when the pumping power exceeds the DOPO threshold, the selected ground state

saturates the DOPO gain by stimulated emission and completely suppresses all the other states

including the non-selected ground states. The quantum coherence among the degenerate ground

states is completely lost. A quantum-to-classical crossover is completed at this point.

Fig. 9 in Ref. (43) shows the probabilities of obtaining one of the two degenerate ground

states, |↑↓↑↓ · · · ↓〉 for the N = 16 anti-ferromagnetically coupled 1D Ising ring, versus the

evolution time. Here r is the squeezing parameter for a field injected into the open port of

the 90/10 output coupler. With increasing r, the accuracy of the quantum measurement of the

in-phase amplitude x̂ = 1
2
(â + â†) is improved and the noise injected into the same observ-

able of the internal field is suppressed. The total number of spin eigenstates for this problem is

216 ' 105, so the success probability for a random guess is ∼ 10−5. The quantum filtering step,

just before spontaneous symmetry breaking occurs, enhances the success probability to∼ 10−4,

∼ 10−3 and ∼ 5 × 10−3 for r = 0 (vacuum state input), r = 0.5 and r = 1.0 (squeezed vac-

uum state input), respectively. This first increase in the success probability due to constructive

interference is followed by a second increase in the success probability due to the stimulated

emission associated with the DOPO phase transition.

Protection from thermal excitations If the oscillation frequency ω of a DOPO is not large

compared to the temperature T of the environment, the reservoir field cannot be considered as
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a quantum mechanical ground state (vacuum state). In this case, the thermal excitation injected

into the internal field from the open port is expected to destroy the superposition of the 0-phase

state and π-phase state, and the abovementioned quantum filtering will not function properly.

The system becomes a classical oscillator network.

Fig. 13 in Ref. (43) shows the success probability for the N = 16 anti-ferromagnetically

coupled 1D Ising ring problem versus the normalized pump rate, where an abrupt pumping

scheme is assumed. When the average thermal photon number nth � 1, the optimal pump

rate is just above the oscillation threshold. If the pump rate is below the threshold, the spon-

taneous symmetry breaking and quantum-to-classical crossover do not occur. If the pump

rate is well above the threshold, the DOPO network does not spend enough time below the

threshold employing the quantum filtering process. As expected, the maximum success prob-

ability at the optimum pump rate starts decreasing as the average thermal photon number,

nth = (eh̄ω/kBT − 1)−1, exceeds one. For the experiment in our Report, T ≈ 300 K and

ω = 2π×200 THz, so the thermal photon number is nth = 0.02.

Previous work on OPO Ising machines

Initial experiments with optical-delay-line-coupled OPOs have demonstrated that they can find

solutions to three specific Ising problems: a complete graph with N = 4 spins (18); a Möbius-

Ladder graph with N = 16 spins (24); or a 1D Ising spin chain at large scale (25). However,

none of the previous experiments were reprogrammable: they were purpose-built experiments

that realized only a single problem instance each. Furthermore, they exclusively implemented

graphs with a regular structure in which every node was connected in the same way. A machine

with N − 1 delay lines and 2(N − 1) modulators can represent arbitrary graphs (18, 20), but

even this linear scaling of resources renders such machines difficult and expensive to implement
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for large N .

Miscellanea

A proof that MAX-CUT on cubic graphs is APX-complete appears in Ref. (47). APX-completeness

of MAX-CUT implies that MAX-CUT is NP-complete (48).

To generate random cubic graphs for the benchmarks presented in Fig. 4, we used the pair-

ing model method due to Bollobás (49), as explained in Ref. (50). To generate random graphs

with fixed numbers of edges, we used the library Matlab Tools for Network Analysis by Ger-

gana Bounova (51). Exhaustive search was used to find the ground states of the N = 16 cubic

graphs. We used the BiqMac MAX-CUT solver (33) to compute the ground states of all the

cubic graphs with N > 16. We used multiple runs of the Breakout Local Search solver (34) to

find putative ground states of the random non-cubic, fixed-edge-number N = 100 graphs, with

spot checks performed on ∼ 10% of the instances using BiqMac.

Our 100-spin machine already has 104 spin-spin connections. However, 10,000-spin coher-

ent Ising machines (using measurement feedback) should be constructable with present technol-

ogy, and such machines would have 108 spin-spin connections – far beyond what is considered

possible for current approaches to constructing quantum annealers, and challenging to achieve

even in classical CMOS annealers (52). We also note that the recent development of micron-

scale DOPOs (53) opens up the possibility of constructing on-chip OPO Ising machines, and

our results provide impetus for such efforts.

Munro and Reid (29) analyzed the result of coupling the signal mode of a DOPO to a

13



squeezed bath. This work was extended by Maruo et al. (43) to the case of Ising machines

based on DOPOs, and predicts that if squeezed vacuum states are injected into the open port

of the measurement outcoupling beamsplitter, the success probability for solving Ising problem

instances will be increased.

Building on two theoretical results (30, 54), a time-division-multiplexed boson-sampling

(55) experiment has recently been carried out (56). A proposal for a boson-sampling-like ex-

periment using squeezed states (57) also motivates work on multiplexed OPO systems, which

can produce squeezed states (58).
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Figure S2: Detailed experimental setup schematic.
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