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ABSTRACT: Molecular docking is important in drug discovery but is burdensome for classical computers. Here, we introduce Grid
Point Matching (GPM) and Feature Atom Matching (FAM) to accelerate pose sampling in molecular docking by encoding the
problem into quadratic unconstrained binary optimization (QUBO) models so that it could be solved by quantum computers like
the coherent Ising machine (CIM). As a result, GPM shows a sampling power close to that of Glide SP, a method performing an
extensive search. Moreover, it is estimated to be 1000 times faster on the CIM than on classical computers. Our methods could
boost virtual drug screening of small molecules and peptides in future.

Molecular docking1 is a widely used in silico technique in
virtue screening, lead optimization, and mechanism

study. It determines the pose and binding free energy (ΔGBind)
between a ligand and a protein. Suppose the ligand consist of n
atoms (a1, a2, ..., an), and the coordinate of ai is ri. molecular
docking is to minimize

G a a a r r r r D( , , ..., , , , ..., )n n iBind 1 2 1 2 (1)

Domain D is a docking box restricting the pose of the ligand.
Equation 1 is usually called a “scoring function”. However,
minimizing (1) is nondeterministic polynomial-time (NP)-
hard,2 suggesting that its precise solution requires vast
enumeration of ri. To accelerate molecular docking, software
like AutoDockFR3 and GOLD4 apply approximation algo-
rithms like simulated annealing. Glide5 applied enumeration
but in a stepwise fashion, that different scoring functions, from
rough to precise, are in order used to narrow the solution space
step by step into the final docking poses. Recently, deep
learning models,6 especially generative models, have been
explored for molecular docking. Due to a direct prediction of
binding pose, deep learning models could be much faster,
although their reliability might require further examinations.
Besides algorithmic approaches, attempts have also been made
on hardware, for example, using GPU7,8 for highly parallel
molecular docking. However, current status of molecular
docking is still hard to screen billion-level databases like

ZINC,9 so that there is still an urgent need to develop new
methods to boost molecular docking.
Quantum computers (QCs) like D-WAVE10,11 (a quantum

annealer) and the Coherent Ising Machine (CIM)12−18 are
new approaches to accelerate the solving of NP-hard problems.
A 100,000 qubit CIM has been reported to solve MAX-CUT15

1000 times faster than advanced digital computers. Recently,
they have also been explored in NP-hard problems in science
like compressed sensing,19 RNA folding,20 molecular unfold-
ing,21 and protein protonation.22 To solve an NP-hard
problem with QCs, one way is to encode the problem into a
quadratic unconstrained binary optimization (QUBO)
model,23,24 which is to minimize a quadratic form (xTQr×rx),
where x is r binary decision variables and Q is a coefficient
matrix. In QCs, x is represented by the state of r qubits while
the coefficient matrix Qr×r is translated to interactions among
qubits. The qubit system is evolved to reach a ground-state
Hamilton, which corresponds to minima of the QUBO
instance (see section S1 of the Supporting Information for
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more details). For example, in MAX-CUT, there are n fully

connected vertexes (p1, p2, ..., pn) and the weight of edge

between pi and pj is mij. The goal is to split the vertexes into

two sets (A and B), so that the total edge weights linking

vertexes in different sets reaches a maximum. It is obvious that

the decision variable xi could be whether pi belongs to A or B.

Therefore, MAX-CUT could be written in eq 2 as a quadratic

form. Minimization of f by QCs could yield a best group of xi,

which points to the division of vertexes.
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Figure 1. (A) Workflow of Grid Point Matching (GPM) and Feature Atom Matching (FAM). (B) Current study focuses on accelerating pose
sampling in molecular docking with GPM and FAM.
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Therefore, this Letter focuses on how to encode molecular
docking (eq 1) into QUBO models (Figure 1A). In brief, we
first translate molecular docking into a matching problem
between ligand atoms and space positions and then describe
the matching problem with a QUBO instance. In detail, the
initial difficulty of the encoding is how to convert the
continuous docking box D into a discrete domain of binary
decision variables. Inspired by grid methods, first, we discretize
D into N grid points (g1, g2, ..., gN), to translate molecular
docking into a matching problem between atoms of ligands
and grid points. If ai matches grid point gsdi

, the distance

between ai and aj is dij, and the distance between gs di
and gs dj

is D,

ΔGBind in eq 1 could be estimated as

G a a a G

a a a g g g w

r r r( , , ..., , , , ..., )

( , , ..., , , , ..., )

n n

n s s s
i

n

a g

Bind 1 2 1 2 Bind

1 2
1

n i si1 2
=

=

s N s t d D c1, 2, ..., . .i ij s s disti j
= | | (3)

where wa gi si
defines the fitness when ai is placed around gsdi

, and

could be viewed as an intermolecular term in ΔGBind, while the
constraint term retains the shape of the ligand and could be
regarded as an intramolecular term in ΔGBind. Note that due to
discretization of the solution space ((r1, r2, ..., rn) → (gs d1

, gs d2
, ...,

gs dn
)), ΔGBind′ is a rough estimation of ΔGBind.
Second, eq 3 is converted into a QUBO model. xij is applied

as the binary decision variable to indicate whether ai and gj is
matched. Therefore, eq 3 could be interpreted as a quadratic
form in (4). Note that an additional constraint term is included
in order to restrict that one atom should match, at most, one
grid point. However, one gird point could match to more than
one atom because of the discretization of the docking box D.
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Unlike the QUBO in eq 2, constraints exist in the current
QUBO model. Therefore, we then converted constraints into
two quadratic Lagrange terms in eq 5. Kdist, Kmono, and cdist are
three parameters that require parametrization.
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The QUBO model could then be solved by QCs, as
mentioned above. Due to their stochastic nature, QCs could
output different results within different runs. These results are
taken as sampled poses of ligand binding. Those poses could
be further ranked via comparison of estimated ΔGBind.
Finally, solved matches are converted to docking poses. As a

proof of concept, we only consider here the rigid docking,
where the shape of the ligand is maintained. Therefore, the
conversion is realized via an alignment. Suppose the stand-
ardize coordinate of ai is ri

st and it matches to grid point gs di
,

whose coordinate is Rs di
, a Kabsch RMSD rotation matrix is

calculated to be
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b is a column vector unifying the center of ligand atoms and
their matched grid points. The final docking pose is calculated
by eq 7. The alignment is realized by the Prody25,26 package.
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To quantify wadigdj
in eq 5, we introduced two encoding

methods, differed by ways to generate grid points. The first is
called Grid Point Matching (GPM), whose grid points are
directly generated in a predefined docking box D with a gap of
2 Å. wadigdj

is defined as the van der Waals energy when the
atomic type of ai is placed on gi and is precalculated and saved
on each gi using AutoGrid in AutoDockFR.3 In fact, in the
scoring function of AutoDockFR, electrostatic and solvation
terms are also included. They are neglected here due to poorer
performances (see section S2 of the Supporting Information),
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possibly accounted for by accumulation of error in discrete
space. Matches whose wadigdj

is above 0 are droped for reducing
the consumption of qubits. The second process is called
Feature Atom Matching (FAM). In brief, gird points generated
with a gap of 1 Å in the predefined docking box are coarse-
grained into 3 types of “feature atoms” (FAs) using the
AutoSite27 algorithm (see section S3 of the Supporting
Information for more details). A FA could be a neutral C, a
H-bond-donor H or a H-bond-acceptor O. wadigdj

in FAM is
defined as |χadi

− χg dj
| − 0.5, where χadi

and χgdj
is the Pauling’s

electronegativity28 of the ligand atom and FAs, respectively.
The definition shows the similarity of the wiliness to form H-
bonds.

It has been mentioned before that the scoring functions
(ΔGBind′ ) of GPM and FAM are a rough estimation of ΔGBind.
In fact, we found eq 5 poor in ranking poses (see section S4 of
the Supporting Information). Therefore, we split QC-based
molecular docking into pose sampling and pose scoring, as
shown in Figure 1B. Pose sampling is to sample possible
solutions of the docking pose, while the following pose scoring
is to rank these poses. Comparatively, pose sampling is NP-
hard while pose scoring is not. Also, it only requires a rough
scoring function. Therefore, in our workflow, GPM and FAM
are used for pose sampling while the pose scoring could be left
for classical computers.
Parameterization and benchmarking of both methods focus

on their power to sample poses close to crystal structures. In

Figure 2. Performance and computational cost of Grid Point Matching and Feature Atom Matching. (A) Distribution of minimum RMSD in
sampling (mRMSD) by three sampling methods including Glide SP, Grid Point Matching, and Feature Atom Matching. The gray dashed line
represents the cutoff value of good docking poses (<2 Å). On each violin plot, the upper and lower lines define the range of values; the box defines
values between 0.25 and 0.75 quartiles; the white dot points the median. GPM stands for “Grid Point Matching”, while FAM stands for “Feature
Atom Matching”. (B) Examples of sampled docking poses (red) compared with poses in crystal structures (blue).

Figure 3. Correlation between mRMSD and molecular mass (A), number of qubits (B), and discretized error (C). The coefficients of
determination (R2) are listed on the top-left. The definition of Discret. Error is given in the bottom right, which is the mean of distances between
the coordinate of a ligand atom in crystal structure and the coordinate of its matched space point. GPM stands for “Grid Point Matching”, while
FAM stands for “Feature Atom Matching”.
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detail, redocking tests,29 by which the ligand from a protein−
ligand complex is docked back to its binding site, are
performed. For each case, 30 poses were sampled, and the
minimum root-mean-square distance (mRMSD) between
sampled poses and the pose in the crystal structure was used
to indicate the sampling power. Obviously, a smaller value
represents a stronger ability for pose sampling. Cubic docking
boxes for redocking tests are defined with the same center of
the ligand, and their lengths are set at the largest distance
among ligand atoms plus 8 Å. The parametrization was done
on Astex Diversity Set (ADS) to minimize average mRMSD
while the benchmarking was carried on CASF-2016.30,31 Data
cleansing, results of parametrization,29,32 and further analysis of
parameters could be found in sections S5 and S6, Table S1,
and Table S2 of the Supporting Information. To realize such
large amounts of work, a QC simulator built by the pyqubo33

package was adapted here.
Sampling power evaluated by redocking tests is shown in

Figure 2. GPM could sample high-quality poses (mRMSD < 2
Å) for 225 of 257 cases (87.5%), with an average mRMSD of
1.1 Å and a maximum mRMSD around 5 Å. While in FAM,
high-quality poses are sampled only in 173 cases (67.3%), with
a larger mRMSD in average and on maximum to be 1.8 and 9.4
Å, respectively. A better performance in GPM was not
surprising due to less discretization of the docking box. The
performance of GPM and FAM is not sensitive to grid
positions (see section S7 and Table S3 of the Supporting
Information for more details). To further quantify the
sampling power, we compared our algorithms with the rigid
sampling technique in Glide SP5 (also by the redocking test
described above), which is an exhaustive search so that it is
believed to show a gold performance. Glide SP5 could sample
high-quality poses for 240 cases (93.4%) in CASF-2016, with
an average mRMSD of 1.0 Å and a maximum mRMSD of 6.8
Å. Therefore, GPM has shown a close sampling power to Glide
SP, ensuring its loading on a complete docking workflow (pose
sampling + pose scoring).
We further seek the main factors affecting sampling

performance in both methods. As shown in Figure 3. The
mRMSD in sampling has almost no correlation with mass of
the ligand (R2 = 0.001 in RPM and R2 = 0.009 in FAM) or
number of qubits (R2 = 0.014 in GPM and R2 = 0.006 in
FAM), suggesting our methods are not interfered with by the
size of the ligands. However, mRMSD has a good linear
relationship with discretization error in both techniques (R2 =
0.938 in GPM and R2 = 0.916 in FAM). Also, both regression
coefficients are close to 1. This suggests that discretization of

the docking box might mostly explain the mRMSD in both
methods. Therefore, supposing that the box is less discretized
and more qubits are used, molecular docking by QC could
show a better performance.
Finally, we analyzed the computational costs of loading both

algorithms on the CIM. The CIM can construct fully
connected graphs, while others can only support local graphs
with limited connections, making it suitable for mapping both
algorithms. As shown in Figure 4A, the largest requirement on
CASF is 13,908 qubits while that of FAM is 3,640, which is 1−
2 magnitude smaller than the largest number of qubits of an
experimental CIM15 (∼100,000 qubits), leaving space for
further developing flexible docking methods. A quadric
relationship was further estimated for both methods between
the numbers of qubits and the numbers of ligand atoms (heavy
atoms and polar Hs) in Figure 4B, which suggests the limit of
input ligand atoms at about 156 (GPM) and 305 (FAM),
roughly corresponding to peptides of 15 and 30 residues,
respectively. Therefore, GPM and FAM are suitable for
docking small molecules and peptides but not protein−protein
docking. In addition, since the running time of MAX-CUT on
the CIM is 593 us,15 the running time of pose sampling is
estimated to be in milliseconds, outperforming classical
computers within 3 magnitudes.
To conclude, molecular docking,34,35 and more precisely the

pose sampling process in it, is NP-hard2 and is burdensome for
classical computers, which limits the speed and amount of
virtue screening. QCs11,12 are reliable tools to efficiently solve
NP-hard problems. In fact, QCs have already been used to
solve molecular unfolding,21 which is a preparation step before
molecular docking. However, QCs could not solve pose
sampling or molecular docking directly. Solutions include
using Gaussian Boson Sampling36 or encoding the problem
into QUBO models. Here, we proposed Grid Point Matching
(GPM) and Feature Atom Matching (FAM). They first
translate pose sampling into a matching problem between
atoms and space positions and then into QUBO models. The
solved matches are converted back to docking poses via an
alignment. After extensive benchmarking of their sampling
power, we have shown that GPM has a close performance with
Glide SP, and the performance could be even better when a
more computational resource is applicable. In the future, we
are going to load GPM and FAM on a complete docking
workflow on CIMs to perform virtue screening in billion-level
databases like ZINC.9

Figure 4. Computational cost on the CIM. (A) Comparison of number of qubits acquired by Grid Point Matching and Feature Atom Matching.
The current largest CIM (∼100,000 qubits) is drawn in red dashed lines. GPM stands for “Grid Point Matching”, while FAM stands for “Feature
Atom Matching”. (B) Relationship between number of qubits and number of ligand atoms. Data are plot in red (GPM) or blue (FAM) scatters,
while the fitted curves are drawn in black.
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