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Abstract: In the polyomino puzzle, the aim is to fill a finite space using several polyomino pieces
with no overlaps or blanks. Because it is an NP-complete combinatorial optimization problem,
various probabilistic and approximated approaches have been applied to find solutions. Several
previous studies embedded the polyomino puzzle in a QUBO problem, where the original objective
function and constraints are transformed into the Hamiltonian function of the simulated Ising model.
A solution to the puzzle is obtained by searching for a ground state of Hamiltonian by simulating the
dynamics of the multiple-spin system. However, previous methods could solve only tiny polyomino
puzzles considering a few combinations because their Hamiltonian designs were not efficient. We
propose an improved Hamiltonian design that introduces new constraints and guiding terms to
weakly encourage favorable spins and pairs in the early stages of computation. The proposed
model solves the pentomino puzzle represented by approximately 2000 spins with >90% probability.
Additionally, we extended the method to a generalized problem where each polyomino piece could
be used zero or more times and solved it with approximately 100% probability. The proposed
method also appeared to be effective for the 3D polycube puzzle, which is similar to applications in
fragment-based drug discovery.

Keywords: Ising model; polyomino puzzle; Hopfield neural network; combinatorial optimization

1. Introduction

A polyomino, introduced by Golomb in 1954 [1], is a polygon formed by joining one
or more squares edge to edge. Golomb studied the tiling problem using polyominoes, in
which the goal of the problem is to cover an infinite or finite plane with replicas of a set of
polyominoes [2–4]. The “polyomino puzzle” is a finite version of the tiling problem in which
the goal is to cover a finite space using a number of replicas of a set of polyominoes with
no overlaps or blanks. One of the most well-known polyomino puzzles is the pentomino
puzzle, which is composed of twelve different pentomino pieces (formed by joining five
squares) covering a 6× 10 rectangular space, where each piece should be used only once.

The polyomino puzzle is known to be an NP-complete combinatorial optimiza-
tion problem, and there is no polynomial-time exact algorithm to find its optimal so-
lution. Therefore, various probabilistic and approximated algorithms have been proposed.
Although heuristic tree search algorithms are conventionally used in such scenarios in com-
puter science, they have difficulty finding optimal solutions with the desired probability as
the scale of the problem increases.

In previous studies [5–8], the polyomino puzzle has been embedded in a quadratic
unconstrained binary optimization (QUBO) problem and solved by simulating the dynam-
ics of a multiple-spin system model inspired by the Ising model [9] in physics. The QUBO
problem is a mathematical problem for which the objective is to find a vector of binary
variables that minimizes the target quadratic polynomial function without any constraints
on the variables. It is closely related to the Ising model with the quadratic Hamiltonian
function, which has been thoroughly studied in statistical mechanics for over a century.
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In the QUBO representation of the polyomino puzzle, each possible spatial placement
of a specific polyomino is represented by a dedicated binary (or continuous) variable
called a “spin”. Further, any mutually enhancing or repressing relationship between a
pair of candidate spatial placements is represented by a connection coefficient between the
corresponding spins. The solution to the puzzle is then obtained by searching for a ground
state of the Hamiltonian function of the multiple-spin system. This is achieved by updating
the system status based on the specific dynamics equations, which guarantees the local
minimization of the Hamiltonian in time.

For the QUBO representation of the polyomino puzzle, the design of the Hamiltonian
function and the dynamics model have been studied over more than three decades, includ-
ing by Akiyama et al. [5], Takefuji et al. [6], and Manabe et al. [7]. Recently, the QUBO
approach has been gaining increased attention because of the successes of quantum anneal-
ing, which has been applied to find global minimum solutions effectively. Eagle et al. [8]
solved polyomino puzzles using a quantum annealing simulator and actual hardware
DW2000Q (D-Wave Systems Inc., Burnaby, BC, Canada).

In the QUBO approach, the standard pentomino puzzle requires approximately
2000 spins at a minimum to correctly represent all possible placements of pieces, considering
their rotation and inversion. However, the models used in previous studies could only
deal with lower complexity problems than the pentomino puzzle, such as covering a
small rectangular space and limiting the rotation and inversion of pieces. This is because
their Hamiltonian designs were not efficient enough and overlooked factors such as the
generation of unacceptable small blanks (bubble) where no other polyominoes can be
placed. The quality of a Hamiltonian design strongly influences the possibility of reaching a
global minimum with the QUBO approach whether using a digital computer or a quantum
annealer. Therefore, the development of an improved Hamiltonian design strategy for such
an application is necessary.

In this study, we propose a Hamiltonian of the QUBO model that effectively represents
the polyomino puzzle with consideration of the bubbles and the introduction of novel
guiding terms that weakly enhance favorable spins and pairs of spins in the early stages
of calculation. We used the Hopfield neural network model [10–12] and evaluated the
performance of the proposed Hamiltonian formulation for the standard pentomino puzzle,
which is difficult to solve with previous methods (Section 3).

Furthermore, we expanded our method to the generalized version of the polyomino
puzzle, in which each polyomino piece can be used zero or more times (not exactly once),
allowing the target space to have an arbitrary shape (Section 4), and also accepting mixed
polyomino sizes: tromino, tetromino, pentomino, hexomino, etc. (Section 5). These general-
ization efforts are important to enhance the applicability of this technique and pave the way
for future real-world applications such as rapid virtual screening in fragment-based drug
discovery, which can be regarded as a complicated version of the generalized polyomino
puzzle proposed in this study.

2. Combinatorial Optimization Problem and the Ising Model
2.1. The Ising Model and the QUBO Problem

The Ising model—a simplified version of the Heisenberg model—is a mathematical
model of ferromagnetism in statistical mechanics. In the Ising model, spins that can be
in either of two states (+1 or −1) are typically located on the lattice points, and there are
interactions between adjacent spins. The system has a quadratic Hamiltonian function and
the spin status changes such that it minimizes the Hamiltonian spontaneously through the
interaction between adjacent spins.

The Ising model is mathematically equivalent to the QUBO problem of finding a
binary vector that minimizes the target quadratic polynomial function without any con-
straints on the variables. Lucas formulated various NP-hard combinatorial optimization
problems, such as the maximum cut problem and the traveling salesperson problem, as
Ising models [13]. He embedded the objective function and constraints of the combinatorial
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optimization problem into a corresponding QUBO problem by adding penalty terms in
the Hamiltonian function that raise the energy of a state only when any of the required
constraints are violated.

Nowadays, further efforts are underway to formulate real-world application problems
as QUBO problems, such as financial portfolio optimization running on a machine from
D-Wave [14] and drug discovery with a Gaussian boson sampling simulator [15]. Additionally,
the quantum annealer, or the hardware architecture harnessed by quantum entanglement
dedicated to solving the QUBO problems based on the Ising model, has been actively
developed. Examples include the quantum annealing machine from D-Wave Systems [16]
and the coherent Ising machine (CIM) from NTT [17]. Furthermore, software simulators
running on general-purpose computers such as the simulated bifurcation machine (SBM)
from Toshiba [18] and dedicated but classical semiconductor chips such as the Digital
Annealer from Fujitsu [19] have also been developed.

2.2. Hopfield Neural Network for Solving Combinatorial Optimization Problems

In the field of computer science, mathematical models inspired by the Ising model,
such as the Hopfield neural network [10–12], have been studied as an exotic computing
approach to solve QUBO problems. The Hopfield neural network, proposed by Hopfield
in 1982 [10], is similar to the electron spin-glass model and can be used to solve QUBO
problems by utilizing the intrinsic characteristics of its quadratic Hamiltonian minimization.
In the original model, the output of a neuron, which is a node of the network, had a binary
output value of zero or one. In the later model, the output has been extended to have a
continuous value from zero to one [11]. Further, the spin status is computed as continuous
values, and a binarization operation is performed after reading out the final status.

The Hopfield neural network is able to solve combinatorial optimization problems by
embedding the objective function and constraints into a QUBO formulation and searching
for a ground state of Hamiltonian defined for the network [12]. The procedure merely
provides a local minimum of Hamiltonian depending on the initial states and random noise,
and thus many trials are required in general to find the ground state. A carefully designed
Hamiltonian function that efficiently represents the characteristics of the target problem
and provides a more convex energy landscape can significantly increase the probability
of reaching the global minimum. An appropriate procedure for updating the system
status can also significantly influence the convergence performance for finding the optimal
solution in the Hopfield neural network and its derivative algorithms, such as the Gaussian
machine [20]. In this study, we evaluated the performance of the proposed method by
using a software simulator that implements a Hopfield neural network with continuous
output values.

Considering the Hopfield neural network, the energy ground state is searched for by
iteratively updating the neurons’ output based on specific update rules. Regarding the
model with continuous output values, each neuron first calculates its internal value Ui
using the following differential equation:

dUi
dt

= −Ui
τ

+
n

∑
j=1

WijVj + θi , (1)

where n is the number of neurons in the network, Wij is the weight between neurons i
and j, Vj is the output of another neuron j, and θi is the bias (i.e., the input to neuron i).
In addition, τ is the time constant parameter, which determines how well the internal
values of the neuron are conserved, considering the time variation dt. The Hopfield neural
network is an interconnected network; however, it does not contain any self-connections
(Wii = 0), and the weight values are symmetric (Wij = Wji).
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Thereafter, the output value Vi of the neuron i is determined by the following sig-
moid function:

Vi =
1

1 + exp
(
−Ui/Tm f

) , (2)

where Tm f is a parameter that determines the gradient of the sigmoid function (also known
as the mean-field temperature). A higher Tm f makes the sigmoid function closer to a linear
function, whereas a lower Tm f makes it closer to a step function.

The energy of the network in the continuous value model is defined as follows:

F = E− Tm f ·S , (3)

E = −1
2

n

∑
i=1

n

∑
j=1

WijViVj −
n

∑
i=1

θiVi , (4)

S =
n

∑
i=1

{
Vi loge

1
Vi

+ (1−Vi) loge
1

1−Vi

}
. (5)

The discrete value model minimizes the energy E in Equation (4) by repeatedly
updating the neurons, whereas the continuous value model minimizes the energy F, which
also considers the entropy term S as in Equation (3) [11]. Here, it is possible to search for a
solution to a combinatorial optimization problem using the following steps.

1. Express the objective function to be minimized in a quadratic form for n binary variables.
2. Compare the quadratic form to be minimized with the energy function E in Equation (4)

and obtain the values of Wij and θi , which make them coincide.
3. Construct a Hopfield neural network with the obtained values of Wij and θi .
4. Select one neuron randomly and update it using Equations (1) and (2).
5. Perform Step 4 several times to minimize the free energy F in Equation (3).
6. Obtain the output values of the neurons and binarize them based on some criteria.

The solution is obtained if the output values of the neurons after the binarization
operation satisfy the constraint conditions. In this study, the binarization is performed
based on whether the output value is greater than or equal to 0.5.

Regarding this case, for the binarized result of the minimum solution to F to be
consistent with the minimum solution to E, the value of Tm f must be considerably small
at the end. Moreover, there must be no significant difference between the landscape of
the basin created by F and that of E. Akiyama et al. proposed a method known as the
sharpening technique, in which Tm f is large and the gradient of the sigmoid function is
gradual in the initial states and becomes progressively steeper over time [5]. This method
increases the probability of convergence to the global minimum by gradually transforming
the space of F from a state where the ground state is easy to find to a state where there is
almost no difference from the original landscape of E. We employ this technique, and the
details of Tm f scheduling are presented in Section 3.3.1.

3. Solving Pentomino Puzzles with the Ising Model
3.1. Pentomino Puzzle

Figure 1 shows a pentomino puzzle, which is a well-known polyomino puzzle example.
Pentominoes are formed by joining five squares, and each of the twelve unique pentominoes
is used only once in the pentomino puzzle. Therefore, the total size of the board is 60 squares,
and a typical example is a 6× 10 board, as shown in Figure 1. In this study, pentominoes
can rotate every 90 degrees and can be inverted (flipped front and back). Considering these
conditions, the pentomino puzzle has 2339 unique solutions [21].
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where 𝑀 is the number of types of pentominoes and 𝑃௠ is the set of neurons that express 
all the placement patterns of a pentomino 𝑚. The first term of Equation (6) becomes zero 
only when the summation of 𝑉௜ included in 𝑃௠ is one for each pentomino 𝑚. An ideal 
state in which the output of only a single neuron is one and others are zero for each set of 
neurons 𝑃௠ satisfies the condition. The second term is to eliminate 𝑊௜௜ (the weight from 
a neuron back to itself) generated by the first term; therefore, 𝑊௜௜ = 0. 

3.2.2. Constraint on the Overlap of the Pentominoes on the Board 

Figure 1. The 6× 10 board and pentominoes used in the pentomino puzzle.

3.2. Improvement of the Hamiltonian Function

Applying the Hopfield neural network to the pentomino puzzle, we referred to previ-
ous studies to design the neurons; specifically, a neuron corresponds to a single pattern of
placement of each pentomino on the board (Figure 2) [5,22]. If the output of a neuron is
one, it indicates that a pentomino is at the spatial corresponding position of the neuron.
For instance, there are a total of 296 possible placement patterns on the board, considering
the rotation and inversion of the specific pentomino piece shown in Figure 2. Similarly,
considering the number of placement patterns for the other eleven types of pentominoes,
we observe that a total of 1928 neurons are required to represent all the placement patterns
of the 12 pentominoes.
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Considering the design of the Hamiltonian function, which includes the biases applied
to neurons and the connection weights between neurons, we improve the formulation by
adding new terms, compared to previous studies [5,22]. Here, we first describe the two
conventional constraint terms. Subsequently, we describe four newly proposed terms.

3.2.1. Constraint on the Number of Times Each Pentomino Is Used

All pentominoes must be placed somewhere on the board only once. This constraint
can be expressed by the following equation:

H1 =
1
2

M

∑
m=1

(
∑

i∈Pm

Vi − 1

)2

+
1
2

M

∑
m=1

∑
i∈Pm

Vi(1−Vi) , (6)

where M is the number of types of pentominoes and Pm is the set of neurons that express all
the placement patterns of a pentomino m. The first term of Equation (6) becomes zero only
when the summation of Vi included in Pm is one for each pentomino m. An ideal state in
which the output of only a single neuron is one and others are zero for each set of neurons
Pm satisfies the condition. The second term is to eliminate Wii (the weight from a neuron
back to itself) generated by the first term; therefore, Wii = 0.
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3.2.2. Constraint on the Overlap of the Pentominoes on the Board

All pentominoes must be placed with no overlaps or blanks as a solution to the
pentomino puzzle. This constraint can be expressed by the following equation:

H2 =
1
2

N

∑
n=1

(
∑

i∈Ln

Vi − 1

)2

+
1
2

N

∑
n=1

∑
i∈Ln

Vi(1−Vi) , (7)

where N is the number of squares constituting the board, and Ln is the set of neurons that
express all the placement patterns of the pentominoes occupying a square n on the board.
The first term of Equation (7) becomes zero only when the summation of Vi, included in
Ln, is one for each square n on the board. An ideal state where the output of only a single
neuron is one and the others are zero for each set of neurons Ln satisfies this condition. If
multiple neurons in a set of neurons corresponding to a specific square have an output
value of one, it indicates that pentominoes are overlapping on that square. Furthermore, all
neurons in the set have an output value of zero, indicating that the square is left blank. The
second term in the equation is to eliminate Wii, which is the same as the second term of the
H1 described in Section 3.2.1.

3.2.3. Inhibition of Bubbles

In addition to the two constraints presented above, we added a new constraint to
inhibit bubbles, which are small blanks where there is no room for another pentomino to
be inserted, as demonstrated in the shaded areas in Figure 3. Bubbles can be generated by
a single pentomino or by a combination of several pentominoes. The placement of a single
pentomino that generates a bubble cannot be included in any solution; thus, it can be easily
excluded beforehand. In contrast, it is desirable to restrict a pair of neurons that generate
bubbles; therefore, the following term is added to the Hamiltonian:

H3 = 1
2

Q
∑

i=1

Q
∑

j=1
f (i, j)ViVj ,

f (i, j) =

{
1 if neurons i, j generate a bubble ,

0 otherwise ,

(8)

where Q is the total number of neurons, and the function f (i, j) represents whether the
bubbles are generated or not. If all the pairs in the set of neurons with an output value of
one do not generate bubbles, then this term is minimized to zero.

Entropy 2022, 24, 354 6 of 21 
 

 

All pentominoes must be placed with no overlaps or blanks as a solution to the pen-
tomino puzzle. This constraint can be expressed by the following equation: 

𝐻ଶ =
1

2
෍ ቌ ෍ 𝑉௜ − 1

௜∈௅೙

ቍ

ଶ
ே

௡ୀଵ

+
1

2
෍ ෍ 𝑉௜(1 − 𝑉௜)

௜∈௅೙

ே

௡ୀଵ

 , (7)

where 𝑁 is the number of squares constituting the board, and 𝐿௡ is the set of neurons 
that express all the placement patterns of the pentominoes occupying a square 𝑛 on the 
board. The first term of Equation (7) becomes zero only when the summation of 𝑉௜, in-
cluded in 𝐿௡, is one for each square 𝑛 on the board. An ideal state where the output of 
only a single neuron is one and the others are zero for each set of neurons 𝐿௡ satisfies this 
condition. If multiple neurons in a set of neurons corresponding to a specific square have 
an output value of one, it indicates that pentominoes are overlapping on that square. Fur-
thermore, all neurons in the set have an output value of zero, indicating that the square is 
left blank. The second term in the equation is to eliminate 𝑊௜௜, which is the same as the 
second term of the 𝐻ଵ described in Section 3.2.1. 

3.2.3. Inhibition of Bubbles 
In addition to the two constraints presented above, we added a new constraint to 

inhibit bubbles, which are small blanks where there is no room for another pentomino to 
be inserted, as demonstrated in the shaded areas in Figure 3. Bubbles can be generated by 
a single pentomino or by a combination of several pentominoes. The placement of a single 
pentomino that generates a bubble cannot be included in any solution; thus, it can be eas-
ily excluded beforehand. In contrast, it is desirable to restrict a pair of neurons that gen-
erate bubbles; therefore, the following term is added to the Hamiltonian: 

𝐻ଷ =
1

2
෍ ෍ 𝑓(𝑖, 𝑗)𝑉௜𝑉௝

ொ

௝ୀଵ

ொ

௜ୀଵ

 , 

𝑓(𝑖, 𝑗) = ൜
1 if neurons 𝑖, 𝑗 generate a bubble ,
0 otherwise ,

 

(8)

where 𝑄 is the total number of neurons, and the function 𝑓(𝑖, 𝑗) represents whether the 
bubbles are generated or not. If all the pairs in the set of neurons with an output value of 
one do not generate bubbles, then this term is minimized to zero. 

 
Figure 3. Bubbles generated by a single pentomino and a pair of pentominoes. 

3.2.4. Encouragement for Combinations of Pentominoes That Contact Each Other 
Considering the 𝐻ଷ described in Section 3.2.3, we restrict inappropriate combina-

tions of neurons that generate bubbles. In contrast, it is also possible to improve the con-
vergence performance to the optimal solution by encouraging appropriate combinations 
of neurons. One of the examples is the appropriate mutual contact of pentominoes. The 
more the edges of two pentominoes touch, the better the contact between them. Therefore, 
the following term is added to the Hamiltonian: 

Figure 3. Bubbles generated by a single pentomino and a pair of pentominoes.

3.2.4. Encouragement for Combinations of Pentominoes That Contact Each Other

Considering the H3 described in Section 3.2.3, we restrict inappropriate combinations
of neurons that generate bubbles. In contrast, it is also possible to improve the convergence
performance to the optimal solution by encouraging appropriate combinations of neurons.
One of the examples is the appropriate mutual contact of pentominoes. The more the edges
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of two pentominoes touch, the better the contact between them. Therefore, the following
term is added to the Hamiltonian:

H4 = − 1
2

Q
∑

i=1

Q
∑

j=1
g(i, j)ViVj ,

g(i, j) =

{
µij if λij = 0 ,

0 otherwise ,

(9)

where µij is the number of edges of squares shared by the two pentominoes corresponding
to the neurons i, j, and λij is the number of overlapping squares of the two pentominoes.
The function g(i, j) evaluates the goodness of the combination for all pairs of neurons. If
the placements of pentominoes corresponding to neurons i, j do not overlap, then the pair
is encouraged in proportion to the number of edges they share with each other.

3.2.5. Encouragement for Pentominoes That Contact the Borders of the Board

Regarding the H4 described in Section 3.2.4, we evaluate the goodness of the combina-
tions of pairs of neurons. Similarly, we can also evaluate the goodness of a single neuron.
To weakly encourage pentominoes that contact the borders of the board well, the following
term is added to the Hamiltonian:

H5 = −
Q

∑
i=1

hiVi , (10)

where hi is the number of edges where the placement of a pentomino corresponding to
neuron i contacts any borderline of the board.

3.2.6. Broad Restriction on All Pairs of Neurons

The encouragement terms described above will promote the finding of an optimal
solution; however, this tends to make output values of several neurons fixed to one at the
early stages in the simulation. It reduces the simulation runtime. Nonetheless, it increases
the probability of being trapped in a local minimum because the Hopfield neural network
is sensitive to the initial states of neurons initialized by uniform random numbers. To
avoid this unintentional behavior, all pairs of neurons are equally suppressed. Thus, the
following term is added to the Hamiltonian:

H6 =
1
2

Q

∑
i=1

Q

∑
j=1

ViVj . (11)

3.2.7. Hamiltonian for the Pentomino Puzzle

Combining Equations (6)–(11), the modified Hamiltonian for the pentomino puzzle is
proposed as follows:

H = AH1 + BH2 + CH3 + γ(DH4 + EH5 + FH6) . (12)

Whereas H1 to H3 are constraint terms that describe the hard constraints on the
problem, H4 to H6 are the guiding terms that work to guide the system to the global
minimum. Guiding terms that encourage or restrict neurons or pairs of neurons have a
common issue. If the coefficient of the term is too large, the ground state of the free energy
function does not necessarily match the state in which the target puzzle is solved. Therefore,
we introduce the parameter γ, which is a decaying weight coefficient for guiding terms.
The parameter γ is one at the start of the simulation and decays linearly to zero at the end.
Therefore, the effect of guiding terms is weakened over the course of the simulation. The
coefficients A, B, C, D, E, and F on each term are positive real numbers. These coefficients
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determine the balance of each term; therefore, it is very important to select the appropriate
values.

Comparing Equation (4) to Equation (12), the weights Wij between the neurons and
biases θi are obtained as follows:

Wij =


−A− Bλij − C f (i, j) + Dγg(i, j)− Fγ if i 6= j and i, j ∈ Pm ,

−Bλij − C f (i, j) + Dγg(i, j)− Fγ if i 6= j and i ∈ Pm and j /∈ Pm ,

0 otherwise ,

θi =
A
2 + B

2 ai + Eγhi ,

where ai is the size of the polyomino corresponding to neuron i (ai is five for the pen-
tomino puzzle).

3.3. Computer Experiments
3.3.1. Experimental Parameters

Considering the simulation, we randomly selected one of the n neurons and calculated
its output value Vi based on the update rule described in Section 2.2. In other words, we
chose the asynchronous update of neurons, which is only feasible in software simulations
and has a better effect for faster convergence. In this study, we define one time step as
performing this update process n times, which is the number of neurons. Because the
selection of a neuron was performed randomly, there were neurons that were updated
multiple times and some that were never updated during a single step. Moreover, ∆t = 1
and τ = 1 are used in Equation (1), which indicates that the influence of the previous
value of Ui is completely forgotten in each update. In addition, the output value Vi of each
neuron is initialized by a uniform random number in the range [0, 2/n] such that the sum
of the outputs of the n neurons approaches one. This is because if each output value is
too large, such as 0.5, it will take longer for the network to stabilize at the earlier stages of
the simulation.

We employed the sharpening technique that decays Tm f , which determines the gra-
dient of the sigmoid function over the course of the simulation. The scheduling of Tm f is
as follows:

Tm f (t) = max
(

T(0)
m f

(
1− t

tmax

)
, 10−6

)
,

where T(0)
m f is the initial value of Tm f , which is fixed at one in this experiment. Moreover, t is

the number of steps in the simulation, and tmax is the total number of steps to be specified.
The computer experiments presented in this section were performed by varying tmax from
500 to 5000.

The coefficients of the proposed Hamiltonian were determined via Bayesian optimiza-
tion to obtain the values shown in Table 1. The details are described in Section 6.1.

Table 1. Optimized coefficients of the Hamiltonian for the pentomino puzzle.

Problem A B C D E F

Pentomino puzzle 4.29 2.16 8.38 0.246 0.0358 1.95

3.3.2. Probability of Finding the Optimal Solution

Figure 4 shows the experimental results obtained by changing the total number of sim-
ulation steps, tmax. Considering each setting of tmax, we ran the simulation 1000 times with
different random seeds for generating the initial output value of the neurons. Figure 4a
shows the distribution of the Hamiltonian energy obtained in the final state of the sim-
ulation. As tmax increases, the system discovers smaller energy states, indicating better
solutions. Figure 4b shows the probability of finding the optimal solution, where the
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probability is 90.5% at tmax = 5000, indicating that the proposed Hamiltonian has a better
performance in searching for the solution.

The CPU time for a simulation with tmax = 5000 using a single CPU core (Intel Xeon
E5-2680 2.4 GHz, Intel Corporation, Santa Clara, CA, USA) was approximately 30 s.
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Figure 4. (a) Energy distribution of Hamiltonian and (b) probability of finding an optimal solution
for various tmax.

Figure 5 shows the intermediate states of conversion to an optimal solution. Considering
any trial, the pentominoes in contact with the borders were placed first, mainly because
of the H5 term. Additionally, the H2 term, which restricts the overlap of pentominoes,
suppresses the placement to the center of the board where pentominoes are easily over-
lapped. Thereafter, the placement of pentominoes that have been in contact with the already
placed pentominoes can be selected. This is because the H4 term encourages good pairs of
placements and when complex spaces are produced by the placement of pentominoes, only
specific pentominoes can cover the space properly. Thus, because the proposed method is
not formulated in such a manner as to increase the diversity of solutions, it tends to con-
verge to the same optimal solution in multiple trials. When the number of steps tmax = 5000,
the optimal solution was found in 905 out of 1000 trials, with only 4 unique solutions.
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pentomino placement corresponds to a neuron, and the thickness of each pentomino represents the
output value of the neuron.



Entropy 2022, 24, 354 10 of 21

4. Allowing Zero or Multiple Usage of Polyomino and Arbitrarily Shaped Board
4.1. Target Problem

The pentomino puzzle presented above can be considered a special case of the gener-
alized problem. In this section, we extend the puzzle in two aspects as a first step:

1. Each pentomino can be used zero or more times;
2. An arbitrarily shaped board is the subject of the problem.

Hereinafter, the generalized model allows each polyomino to be used zero or more
times. Additionally, we consider boards of any shape (all the squares making up the
board need to be interconnected) as a crucial step for approaching real-world applications.
Figure 6 shows an example of the generalized polyomino puzzle problem.
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4.2. Hamiltonian for the Generalized Polyomino Puzzle

For the generalized polyomino puzzle described in Section 4.1, a modification of the
Hamiltonian in Equation (12), which is for pentomino puzzles, needs to be considered.
Because none of the terms in Equation (12) depend on the shape of the target board, the
same Hamiltonian can be used for the arbitrary shape of the board. In contrast, because
the H1 term restricts the number of times each pentomino can be used, this H1 must be
removed to place each pentomino zero or more times. Therefore, the Hamiltonian for the
generalized polyomino puzzle is introduced as follows:

H = BH2 + CH3 + γ(DH4 + EH5 + FH6) . (13)

The weights Wij between the neurons and biases θi are obtained as follows:

Wij =

{
−Bλij − C f (i, j) + Dγg(i, j)− Fγ if i 6= j ,

0 otherwise ,

θi =
B
2 ai + Eγhi .

4.3. Generation of Arbitrarily Shaped Boards

We generated several boards with complex shapes for the generalized polyomino
puzzle other than the 6× 10 board used in the pentomino puzzle. Each board was randomly
generated by joining 60 squares without any hole on the board. Figure 7 shows the
101 different boards in an ascending order based on their perimeters, representing their
complexity. This consists of the original 6× 10 board and 100 randomly generated boards.
We selected the 6× 10 board with a perimeter of 32 as the original board (Original), and
the board with the longest perimeter of 94 was considered as the most complex board
(Complex). Furthermore, the board with a perimeter of 64, which is closest to the average
of those two perimeters, was chosen as the board with the average complexity (Middle).
The total number of neurons for the Original, Middle, and Complex boards was 1928, 857,
and 129, respectively. These three boards are shown in Figure 7.
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4.4. Computer Experiments
4.4.1. Experimental Parameters

The experiments were performed with the total number of steps tmax changing from 50
to 500. The steps were set shorter than in the experiment described in Section 3.3.1 because
the number of simulation steps required to obtain an optimal solution was smaller. We used
Bayesian optimization to determine the coefficients of the proposed Hamiltonian function,
shown in Table 2. For the other parameters, we used the same settings as in Section 3.3.1.

Table 2. Optimized coefficients of the Hamiltonian for the generalized polyomino puzzles.

Problem B C D E F

Original 3.09 5.64 0.777 0.430 4.76
Middle 1.17 3.98 0.511 0.671 2.36

Complex 2.66 3.31 0.129 0.164 4.83

4.4.2. Probability of Finding an Optimal Solution

Figure 8 shows the probability of finding an optimal solution for various tmax. Similar
to Section 3.3.2, considering each tmax, we ran the simulation 1000 times with different
random seeds for generating the initial output value of the neurons. More than 99% of
the trials reached an optimal solution at tmax = 200 for each board, indicating that the
proposed Hamiltonian had a sufficient performance for these problems.

Moreover, the probability of the Original board was substantially higher than the
standard pentomino puzzle shown in Section 3.3.2, even with fewer tmax. The extension of
the number of times each pentomino is used can be considered as the drastic relaxation
of the problem, resulting in easier achievement. In addition, the overall probability of
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finding an optimal solution in the Middle and Complex boards was higher than that in the
Original. This is because of their complex shapes, where the total number of neurons is
lower because there are areas with fewer candidates suitable to cover the space. Moreover,
the output values of certain neurons are fixed to one in the early stages of the simulation,
narrowing the search space.
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mino puzzles).

Figure 9 shows the intermediate states in the course of conversion to an optimal
solution of Middle (Figure 9a) and Complex (Figure 9b) boards. Because of the complex
shapes of the board, some places have only a few candidates for pentominoes that can
cover them, and the output value of the corresponding neuron is fixed to one at the earlier
stages of the simulation.
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5. Accepting Various Sizes of Polyominoes
5.1. Set of Polyominoes

Popular polyomino puzzles use polyominoes of the same size. However, some prob-
lems deal with various sizes of polyominoes, such as the example of a commercialized poly-
omino puzzle, where an 8× 8 board is covered with twelve pentominoes and one tetromino.

Figure 10 is an example of the problem discussed here. In addition to the extensions
described in Section 4, we further extend the puzzle to deal with polyominoes of vari-
ous sizes simultaneously as a subsequent step. However, covering a board with small
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polyominoes is generally easier than with large polyominoes. Regarding some industrial
applications, such as fragment-based drug discovery, it is desirable to cover the space by
combining a small number of larger and functional components, rather than simply filling
it up with several tiny components. Therefore, we consider the problem of minimizing the
total number of polyominoes used by enhancing the use of larger polyominoes.
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Table 3 shows the number of types of polyominoes for each size. Polyominoes that
have the same shape when rotated or inverted are treated as the same type of polyomino.
In addition to the twelve types of pentominoes discussed in the previous sections, we
introduced new polyominoes of various sizes. However, if we include tiny polyominoes
such as the monomino (size 1) and the domino (size 2) in the candidate set, there are
trivial solutions, such as covering the board by simply repeating them. Therefore, only
the tromino (size 3) and the tetromino (size 4) were included as small-size polyominoes.
We also included the hexomino (size 6) as larger polyominoes. We have not included
heptomino (size 7) and those larger than that because they have a large number of shapes
and the total number of neurons required will be too large. The total number of types
of polyominoes used was 54. When all the 54 polyominoes were used, the total number
of neurons needed for the Original, Middle, and Complex boards was 8469, 4141, and
693, respectively.

Table 3. Number of types of polyominoes for each size. (The polyominoes that were used in the
experiments are shown in bold).

Name Size of Polyomino No. of Types

monomino 1 1
domino 2 1
tromino 3 2

tetromino 4 5
pentomino 5 12
hexomino 6 35
heptomino 7 108
octomino 8 369

5.2. Computer Experiments
5.2.1. Experimental Parameters

Considering the generalized polyomino puzzle with various sizes of polyominoes,
we used the same Hamiltonian as in Section 4 because the H6 term could reduce the total
number of polyominoes to be used. A detailed discussion is presented in Section 5.2.3. The
experiments were performed by varying the total number of steps tmax from 50 to 500. We
used Bayesian optimization to determine the coefficients of the proposed Hamiltonian,
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which are shown in Table 4. For the other parameters, we used the same settings as in
Section 3.3.1.

Table 4. Optimized coefficients of the Hamiltonian for the generalized polyomino puzzle with various
sizes of polyominoes.

Problem B C D E F

Original 3.38 5.70 0.615 0.518 3.91
Middle 1.41 5.05 0.647 0.328 3.31

Complex 1.81 5.56 0.482 0.407 3.29

5.2.2. Probability of Finding an Optimal Solution

Figure 11 shows the probability of finding an optimal solution and the breakdown
of the total number of polyominoes used in each solution. Considering each tmax, we
ran the simulation 1000 times with different random seeds to generate the initial output
value of the neurons. There was a little difference in the probability of finding an optimal
solution among the three boards, and the probabilities were reached at approximately 100%
at tmax = 200 or larger for all the boards. The probability of finding a solution does not
differ significantly compared to the results using only the pentominoes shown in Figure 8.
This is because although the total number of required neurons was increasing, the total
number of possible solutions was also increasing simultaneously. In addition, considering
the breakdown of the total number of polyominoes used in the obtained solutions, most
of the solutions in the Original and Middle boards covered the 60 squares using only
10 hexominoes (polyominoes of size 6), minimizing the total number of polyominoes.
There was no solution that covered the Complex board with ten polyominoes; therefore,
the solutions with eleven polyominoes were obtained.
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5.2.3. Size of the Placed Polyominoes

In the previous section, we showed that the total number of polyominoes used to
cover the board was minimized by using the same Hamiltonian as in Section 4.4.1, which
was not an intuitive result because the effect of the H6 term suppresses all the pairs of
neurons universally. The H6 term penalty increases when the number of neurons to output
one is increasing, indicating the use of more polyominoes. Therefore, the use of fewer and
larger polyominoes was encouraged to minimize the Hamiltonian energy, and the total
number of polyominoes was minimized. Figure 12 shows the breakdown of the size of the
placed polyominoes when the coefficient F for the H6 term varies from the optimum value
obtained shown in Table 4. At F = 0, a large proportion of trominoes and tetrominoes
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are observed. However, as coefficient F increases, the proportion of such small-sized
polyominoes decreases, and at the setting of F = 1, hexominoes are mostly used. The
same is true for F > 1. For the Complex board, a certain percentage of tetrominoes and
pentominoes were used, even at F = 1 or larger, because the board contained areas that
were not coverable only with hexominoes.
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5.2.4. Performance with the Reduced Types of Polyominoes

When all the 54 types of polyominoes were available, an optimal solution was found
with a high probability and a small number of simulation steps. Therefore, to verify the per-
formance when the number of available polyomino types becomes smaller, we performed
experiments by randomly removing the polyominoes from the set of polyominoes of the
basic 54 types. Figure 13 shows the probability of finding an optimal solution and the
breakdown of the number of placed polyominoes for the number of types of polyominoes.
Furthermore, tmax is fixed at 500, which was considered large enough (for reference, the
results for various tmax are shown in Figure S1 in the Supplementary Material). Because the
shape of the board became more complicated from Original to Complex, the probability
of finding an optimal solution decreased more rapidly, when gradually removing the
polyominoes from the set. For the Middle and Complex boards, it was almost impossible
to obtain any optimal solution with randomly selected ten types of polyominoes from the
original set. This is because a complex local part of a board tends to have few candidate
polyominoes to cover it, and all such candidates may have been removed. In contrast,
considering the Original board, it was possible to cover the board with fewer types of
polyominoes. Even when we randomly selected only ten types of polyominoes, the optimal
solution was found with a probability of approximately 40%.
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6. Discussion
6.1. Optimization of the Coefficients of the Hamiltonian

For the optimization of the coefficients of the Hamiltonian function, we used Op-
tuna [23], a Bayesian optimization library in Python. Bayesian optimization makes it
possible to perform the parameter search efficiently, which is extremely time-consuming
when grid search is used. Based on the preliminary experiments, the search range of each
parameter was set as shown in Table 5, and the number of iterations in the Bayesian opti-
mization was set to 1000 to find the optimal parameters. In each experiment, the obtained
parameters were rounded to three digits.

Table 5. Search ranges for the parameters.

Parameter Range

A [0,5]
B [0,5]
C [0,10]
D [0,1]
E [0,1]
F [0,5]

Among the searched parameters, a positive correlation was found between coefficient B
of the H2 term, which restricts the overlap of polyominoes, and coefficient F of the H6 term,
which suppresses all the pairs of neurons. This is to maintain a balance between the H2 term
(which provides a positive bias value for each neuron) and the H6 term (which provides a
penalty for each pair of neurons equally). No significant correlation was observed among
the other parameters.

6.2. Proposal of a New Term That Minimizes the Total Number of Polyominoes Placed

We consider the generalized polyomino puzzle with various sizes of polyominoes in
Section 5, and the total number of placed polyominoes is minimized by the effect of the
H6 term, which restricts all the pairs of neurons. However, the H6 term is a guiding term
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whose effect is ignored at the end of the simulation by parameter γ. Therefore, considering
the current design of the Hamiltonian, the final value of the Hamiltonian is the same,
regardless of the size of the polyominoes that cover the board. To explicitly differentiate
the final Hamiltonian value depending on the size of the placed polyominoes, we designed
an additional term that is inversely proportional to the size of the polyominoes as follows:

H7 =
Q

∑
i=1

Vi
ai

. (14)

Adding Equation (14) to Equation (13), the Hamiltonian is modified as follows:

H = BH2 + CH3 + γ(DH4 + EH5 + FH6) + GH7 .

The weights Wij between the neurons and biases θi are obtained as follows:

Wij =

{
−Bλij − C f (i, j) + Dγg(i, j)− Fγ if i 6= j ,

0 otherwise ,

θi =
B
2 ai + Eγhi − G

ai
.

We performed the same experiment as in Section 5.2.2 using the modified Hamilto-
nian. For the coefficients of the modified Hamiltonian, we used Bayesian optimization to
determine the values shown in Table 6.

Table 6. Optimized coefficients of the Hamiltonian with an additional H7 term for the generalized
polyomino puzzle with various sizes of polyominoes.

Problem B C D E F G

Original 3.21 5.86 0.640 0.489 3.61 2.59
Middle 1.33 4.97 0.606 0.344 2.96 2.67

Complex 2.16 5.68 0.469 0.384 3.34 2.37

Figure 14 shows the results of the experiment. Although the probability of finding an
optimal solution at tmax = 50 increases slightly, no significant improvement is observed
overall. Moreover, there is no change in the total number of placed polyominoes, and the
introduction of the H7 term may assist in finding an optimal solution when the problem
size increases.

Entropy 2022, 24, 354 17 of 21 
 

 

whose effect is ignored at the end of the simulation by parameter 𝛾. Therefore, consider-
ing the current design of the Hamiltonian, the final value of the Hamiltonian is the same, 
regardless of the size of the polyominoes that cover the board. To explicitly differentiate 
the final Hamiltonian value depending on the size of the placed polyominoes, we de-
signed an additional term that is inversely proportional to the size of the polyominoes as 
follows: 

𝐻଻ = ෍
𝑉௜

𝑎௜

ொ

௜ୀଵ

 . (14)

Adding Equation (14) to Equation (13), the Hamiltonian is modified as follows: 

𝐻 = 𝐵𝐻ଶ + 𝐶𝐻ଷ + 𝛾(𝐷𝐻ସ + 𝐸𝐻ହ + 𝐹𝐻଺) + 𝐺𝐻଻ . 

The weights 𝑊௜௝ between the neurons and biases 𝜃௜ are obtained as follows: 

𝑊௜௝ = ൜
−𝐵𝜆௜௝ − 𝐶𝑓(𝑖, 𝑗) + 𝐷𝛾𝑔(𝑖, 𝑗) − 𝐹𝛾 if 𝑖 ≠ 𝑗 ,

0 otherwise ,
 

𝜃௜ =
𝐵

2
𝑎௜ + 𝐸𝛾ℎ௜ −

𝐺

𝑎௜

 . 
 

We performed the same experiment as in Section 5.2.2 using the modified Hamilto-
nian. For the coefficients of the modified Hamiltonian, we used Bayesian optimization to 
determine the values shown in Table 6. 

Table 6. Optimized coefficients of the Hamiltonian with an additional 𝐻଻ term for the generalized 
polyomino puzzle with various sizes of polyominoes. 

Problem B C D E F G 
Original 3.21 5.86 0.640 0.489 3.61 2.59 
Middle 1.33 4.97 0.606 0.344 2.96 2.67 

Complex 2.16 5.68 0.469 0.384 3.34 2.37 

Figure 14 shows the results of the experiment. Although the probability of finding an 
optimal solution at 𝑡௠௔௫ = 50 increases slightly, no significant improvement is observed 
overall. Moreover, there is no change in the total number of placed polyominoes, and the 
introduction of the 𝐻଻ term may assist in finding an optimal solution when the problem 
size increases. 

 
Figure 14. Probability of finding an optimal solution and the breakdown of the number of placed 
polyominoes for various 𝑡௠௔௫ with modified Hamiltonian. 
Figure 14. Probability of finding an optimal solution and the breakdown of the number of placed
polyominoes for various tmax with modified Hamiltonian.



Entropy 2022, 24, 354 18 of 21

6.3. Possibility of Application for Drug Discovery

Recently, fragment-based drug discovery (FBDD) has attracted much attention in
the field of drug discovery. The method evaluates a drug candidate compound by the
combination of fragments of the compound [15,24,25]. The number of unique fragments
included is rather saturating, even when the size of the compound database grows very
rapidly [24]. Considering this context, several methods have been proposed for solving the
problems appearing in the FBDD as combinatorial optimization problems. For example,
eHiTS performs a fragment-based docking simulation by formulating the problem as a
weighted maximum clique-finding problem [25]. In addition, Banchi et al. solved a similar
weighted maximum clique problem by emulating the Gaussian boson sampler (GBS), which
is a type of optical quantum computer [15].

The problem of filling the pocket of a target protein with fragments is similar to
the generalized polyomino puzzle of covering a board with polyominoes. Therefore, we
consider that the proposed Hamiltonian can be applied to drug discovery in the future.
The fragments have varying sizes, and each fragment can be used zero or more times. Thus,
our extension of the generalized polyomino puzzle illustrated in Section 5 is similar to the
real-world problem. We needed a better resolution for representing the spherical shape of a
protein pocket; therefore, we adopted the same Hamiltonian function with polyhex tiles
(Figure 15).
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However, there are still huge differences between them. For example, regarding
the FBDD, the space to be filled is 3D instead of 2D, and the pieces filling the space will
take more complex shapes. Figure 16 shows examples of the Hamiltonian proposed in
Section 4.2, applied to a problem with more complex pieces in 3D by using a cube instead
of a square. We performed a series of computer experiments on these problems; however,
the details are not presented in this paper.

One further difference is the necessity of satisfying constraints. For drug discovery,
filling the 3D space, called the binding pocket, in the drug target protein is not the main
aim, but rather designing more stable molecules in the binding pocket. This means that
having some space remaining is acceptable. Furthermore, as the binding pocket has some
flexibility, there is tolerance for overlapping pieces. This means that states that do not
strictly satisfy the constraints may still be valuable. Considering this characteristic, some
space on the board and overlapping of polycubes are allowed.
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More importantly, we need to optimize the space-filling and the physicochemical in-
teractions such as electrostatic interaction, hydrogen bonding, and hydrophobic interaction
between the atoms. By defining a reward in each cube of the board (for each atom type),
it is also possible to design the space-filling problem to maximize the sum of the rewards
defined in each cube with soft constraints. When applying the Hamiltonian proposed in
this study to this problem, we can introduce a reward Rn for each cube n in the H2 term
as follows:

H2 =
1
2

N

∑
n=1

Rn
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i∈Ln
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However, there are more difficult technical issues that need to be solved. First, the
variety of possible fragments corresponding to the types of polycubes is enormous. For
example, Yanagisawa et al. [24] demonstrated that the total number of types of fragments
reached 263,319 for compounds registered in the ZINC12 database [26], a collection of
commercially available chemicals. Therefore, instead of dealing with all these chemically
observable fragments, it is necessary to select a set of core and important fragments that
can be used to navigate the early stages of drug design. It is also necessary to consider the
fine rotation of the fragments in the 3D space, and it may require a huge number of neurons
or spins. Therefore, it is important to narrow down the number of candidates in advance,
depending on the local information of the protein pocket space. Furthermore, although the
polyomino puzzles only consider the contact between the polyominoes, the fragments on
molecules have chemical bonds. In principle, these issues can be addressed by modifying
the Ising model treated in this study; however, the number of spins will be too large unless
it can be reduced using domain knowledge.

7. Conclusions

In this study, we considered a standard polyomino puzzle in which the board is
covered with a given number of polyominoes, designed an improved Hamiltonian function,
and proposed a method to obtain solutions efficiently using the Ising model. Moreover,
we considered the generalized polyomino puzzle with relaxed restrictions on the number
of times the polyominoes could be used, the various polyomino sizes, and the flexibility
of the board shape. To verify the performance of the proposed method in finding the
optimal solution, we conducted evaluation experiments on a software simulator of the
Hopfield neural network. Using our formulation, we were able to solve the standard
pentomino puzzle—with the problem represented by 1928 spins—in more than 90% of
the cases, whereas the models proposed in previous studies had difficulty solving them.
Furthermore, several generalized polyomino puzzles were solved approximately 100% of
the time with a small number of simulation steps. In addition, we consider the possibility of
future applications to real problems such as fragment-based drug discovery. When dealing
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with combinatorial optimization problems inherent in real-world problems, the scale of the
model to be solved can be enormous if we apply a simple modeling approach that treats
all candidates equally. Therefore, it is necessary to keep the size of the problem compact
by considering the specific domain knowledge and local properties of the problem. A
theoretical study aimed at improving the design method of the Ising model and efficiently
controlling the dynamics of the system to handle larger-scale optimization problems should
also be considered.
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