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Abstract: Coherent Ising machine (CIM) is a hardware solver that simulates the Ising model
and finds optimal solutions to combinatorial optimization problems. However, for practical tasks,
the computational process may be trapped in local minima, which is a key challenge for CIM. In
this work, we design a CIM structure with a spiking neural network by adding dissipative pulses,
which are anti-symmetrically coupled to the degenerate optical parametric oscillator pulses in
CIM with a measurement feedback system. We find that the unstable oscillatory region of the
spiking neural network could assist the CIM to escape from the trapped local minima. Moreover,
we show that the machine has a different search mechanism than CIM, which can achieve a higher
solution success probability and speed-up effect.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

With the stagnation of Moore’s Law and the high power consumption of the von Neumann
architecture, there is a huge demand for higher performance of computational power which
requires us to find new computing methods. Recently progress in optical and quantum computing
is paving the way for new paradigms in computing. Among these different methods, the coherent
Ising machine (CIM) is a promising approach that is proposed recently to solve the combinatorial
optimization problem by mapping its cost function to the search of the ground state in the Ising
model [1,2].

A typical CIM machine uses the bistable interfering of the coupled optical state to find
the optical configuration of the ground state through the principle of minimum gain which
corresponds to the solution of the problem [3–6]. The hardware solver is different from traditional
von Neumann computational structures and will be of high significance [7–9]. Compared with
different non-Von Neumann architectures, the CIMs have attracted much attention for their
excellent computing performance [10]. During the past decades, it has been implemented in
various physical systems, such as optical system [5,6,11,12], nanomagnetic-net arrays [13,14],
single-atom [15] and complementary oxide semiconductor devices [16]. Meanwhile, it has
exhibited significant implications for finance, logistics, drug design, and machine learning.

Traditionally, the proposed optical CIMs are mainly based on the degenerate optical parametric
oscillations (DOPO), which uses phase-sensitively amplified optical pulses to represent the
binary spins of the Ising model [17]. Recently, it has been widely studied due to its fully
connected programmable and scalable [18,19]. In addition, CIM based on DOPO has been
applied to graph clustering [20], coloring problems [21], and communication resource allocation
[22,23]. However, the energy evolution of the system may be trapped in the local minima and the
interference of the coherent optical states is phase-sensitive, thus making the CIM computation
technically challenging [24,25]. In the DOPO-based CIMs, the amplitude error correction signals
are introduced as a solution to reduce these problems [25–28].
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Recently, the spiking neurons are regarded as the next generation of computational neural
networks [29–31], and their brain-like learning characteristics have also been studied [32,33].
Experiments on spiking neural networks (SNN) simulated by DOPO-based CIM demonstrate
the complex cluster synchronization phenomenon [34], and CIM with SNN exhibits excellent
computational performance on combinatorial optimization problems [35]. In this study, by
combining the SNN with CIM, we propose a new structure of CIM with SNN by coupling
the dissipative pulses anti-symmetrically to the DOPO pulses in CIM with a measurement
feedback scheme. Exploiting the Gaussian homodyne measurement theory [36], the performance
of SNN-based CIM by the quantum noise is also studied. Moreover, we demonstrate the
dynamics of SNN-CIM under the increasing pump which shows that the unstable oscillations in
SNN-based CIM can be used to escape the solutions from trapped local minima. In addition, the
computational performance of problems with different scales is also studied, which reveals that
SNN-based CIM has a higher probability of finding successful solutions and speed-up effect
compared with the conventional CIMs.

2. Model of SNN-based CIM

The key component of the CIM is the ensemble of binary optical spins, and the interaction of
the spins could be achieved by the coupling of the optical pulses. As shown in Fig. 1(a), the
measurement-feedback (MFB) is employed to achieve the feedback coupling which may improve
the performance of CIM in solving combinatorial optimization problems [5,6,10]. Specifically,
the CIM with MFB expresses the amplitude parametric amplified pulses generated by DOPO
as the analog spins, denoted as µ-type pulses. A small part of each pulse is split for homodyne
detection, and the amplitude of the pulse is measured each round in the fiber-ring cavity. The
measurement results of the amplitude µi of i-th pulse are calculated in the FPGA as a feedback
pulse and injected into the fiber-ring cavity of the main optical path again through the coupler
(with reflectance RB ≪ 1).

Here, the time evolution of the amplitude µi of i-th pulse can be written as dµi/dt =
−∂V(µi)/∂µi = −µi + pµi + g2µ3

i −
∑︁
i′

Jii′µi′ . In this equation, the first, second, and third

terms represent the normalized loss, linear gain pump rate p, and nonlinear saturation rate g2,
respectively. The last coupling term could be mapped to the Ising model H = − 1

2
∑︁
ij

Jijσiσj. The

dynamics of bifurcation of the potential function V(µi) =
µ2

i
2 (1 − p) + g2 µ4

i
4 +

∑︁
i′

Jii′µiµi′ under

different pumps is shown in Fig. 1(b). We notice that the pulse amplitude is not amplified for a
small pump, and V(µi) becomes a paradigmatic bistable potential when the pump is above the
threshold, where the collective symmetry breaking brings the spins into the lower-energy states
(with positive or negative amplitude, corresponding to the spins either in the spin-up state or in
the spin-down state). However, compared with the Ising model of binary spins, the variation of
V(µi) result in different times for different spins to reach stability and amplitude heterogeneity
during stabilization. This may reduce the computational performance of CIM on combinatorial
optimization problems [24,26,27].

To further eliminate the influence of the above effect, we design an SNN-based CIM by injecting
b-type dissipative pulse that is anti-symmetrically coupled to each µ-type pulse (Jµb = −Jbµ = 1)
in the fiber-loop of the CIM with MFB. A schematic diagram of the model by the optical
implementation is shown in Fig. 1(a). The dissipative pulse b can be directly injected through
the propagation of the pulses along the optical loop when the pump is turned off, and the linear
dissipation is regulated by the MFB system.

In a typical DOPO process, second-order nonlinear interaction χ(2) with strength κ occurs
between the pump mode âp and the signal mode âs, considering dissipative pulse signal coupling
and the interaction Hamiltonian could be described by Ĥint = iℏκ(â†2

s âp − â†pâ2
s )+ iℏγbb(âs − â†s ),
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Fig. 1. A schematic diagram of the SNN-based CIM and the dynamical evolution in
coherent computing. (a) A schematic diagram of the model by the optical implementation.
SHG, second harmonic generation; FPGA, field-programmable gate array, PSA, phase-
sensitive amplification; IM/PM, intensity/phase modulator; BHD, balanced homodyne
detection. (b) The potential function V(µ) does not oscillate when the pump is below the
oscillation threshold (red curves) and becomes the bistable potential above the threshold
(black curves). (c) Evolution of the analog spin parametric amplification amplitude with
increasing the pump in antiferromagnetically coupled SNN-based CIM. CSB: collective
symmetry breaking. (d) and (e) correspond to the potential energy V(µ) distribution and
spin trajectory evolution (black curves) in the initial stage of evolution (Nt<150) and the
stable stage (Nt>400) in (b).

where γb is the linear loss intensity modulated by MFB. This interaction Hamiltonian could
be written as the Fock-Planck equations of the positive-p distribution function [37], and the
equivalent c-number statistical differential equations (SDEs) can be obtained by ignoring the
higher-order terms [38,39]. The equivalent c-number SDEs of signal mode as are

das

dt
= −as + pa†s−g2a†s a2

s − γbb +
√︂

p − g2a2
sε1, (1)

db
dt
= −γbb + as. (2)

Here, εj is the real random variable satisfying
⟨︁
εj(t)εj′(t′)

⟩︁
= δjj′δ(t − t′). We denote the

as = ⟨as⟩ + ∆as and the quantum fluctuations satisfy m =
⟨︁
∆a2

s
⟩︁

and n =
⟨︂
∆a†s∆as

⟩︂
. Using

Gaussian homodyne measurement theory and by considering the injecting terms [36,40,41], the
mean amplitude µ = ⟨as⟩, dissipative pulse amplitude b, and variances of quantum fluctuations
n(m) of the SNN-CIM model can be expressed as

dµi
dt = −(1 − p + j)µi − g2(µ2

i + 2ni + mi)µi +
√

j(ni + mi)Wi

+j
∑︁
i′

Jii′(µi′ +Wi′/
√︁

4j) − jγbb,
(3)

dbi

dt
= −γbb + j(µi +Wi/

√︁
4j), (4)

dni
dt = −2(1 + j)ni + 2pmi − 2g2µ2

i (2ni + mi)µi

−j(mi + ni)
2,

(5)
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dmi
dt = −2(1 + j)mi + 2pni − 2g2µ2

i (2mi + ni)µi + p

−g2(µ2
i + mi) − j(mi + ni)

2.
(6)

Here j = RB/∆t denotes the linear dissipation rate due to the measurement of injection coupling
and Wi represents a random real value of normally distributed vacuum noise.

3. Dynamical behaviors of the SNN-CIM

In the following, we study the dynamical behaviors of the SNN-based CIM by numerical
simulations. Here we choose an antiferromagnetically coupled two-spin Ising problem (J = −1)
as an example, which is apparently stable in a state where the two spins have the opposite spin
directions. We start with a small pump that increases linearly in order to satisfy the minimum
gain principle [4]. The time step is set as ∆t = 0.05 and the saturation parameter g2 = 0.01 as
shown in Fig. 1(c)-(e). It is obvious that the mean amplitude evolution can be divided into three
stages as shown in Fig. 1(c). The first stage describes the evolution from noisy conditions to
collective symmetry breaking, and the third stage is the stable bifurcation, which is the same as
the bifurcation process of CIM. Due to the effect of the dissipative pulses, SNN-based CIM has a
unique stage of unstable oscillation compared to CIM, and this dynamic behavior from oscillation
to stability with the addition of pump increases similar to class-II neurons with Andronov-Hopf
(AH) bifurcation [42]. The relationship between the amplitude trajectory of the spins and the
potential function V(µ) is shown in Fig. 1(d) and (e). Compared with the CIM bifurcation that
the transition between spin ↓ state and the spin ↑ state cannot occur due to the potential barrier,
the unstable oscillation of SNN-based CIM can help the spin state to cross the potential barrier to
achieving the transition, as shown by black curves in Fig. 1(d) and the gray curves in Fig. 1(b).
Finally, we find the SNN-based CIM presents a stable state in the stable bifurcation phase, such
as | ↓↑⟩ in Fig. 1(e).

Moreover, we compare the dynamical behaviors of SNN-based CIM with the dynamic process
of the antiferromagnetic two-spin Ising model solved by the CIM model. The minimum gain
of the system is increased due to the effect of the dissipative pulses, and the coupling strength
of SNN-based CIM is slightly larger than that of CIM JS = 3JC. They are both driven by the
same pumping power p = 1 + tanh(0.1(t + 2)), and other parameters are ∆t = 0.002, j = 2,
and g2 = 10−3 as shown in Fig. 2. In Fig. 2(b), we find the variance

⟨︁
∆X2

i
⟩︁
= ni + mi +

1
2 is

anti-squeezed while the variance
⟨︁
∆P2

i
⟩︁
= ni − mi +

1
2 is squeezed in the CIM model. In the

trajectory of variance in Fig. 2(c), the DOPO state evolves from a coherent state that satisfies the
minimum uncertainty product

⟨︁
∆X2

i
⟩︁ ⟨︁
∆P2

i
⟩︁
= 1/4 to a squeezed vacuum state, and the whole

process is in a parametric amplification process. However, under the dynamics of SNN-based
CIM, the trajectory of variance has both parametric amplification and parametric de-amplification.
As a result of this alternate search, the system finally stabilizes in a coherent state with the
minimum uncertainty product. This differs from CIM, where the uncertainty product is much
greater than 1/4.

In order to study SNN-CIM and CIM with multi-node networks, a classical combinatorial
optimization problem, the Max-Cut problem with nodes N=25, is used to study the computational
performance of the model. The graph to be solved for the Max-Cut problem is randomly
generated. We choose the problem scale N = 25, edge density d = E/N = 3, which contains
75 edges, and try to make each node have 3 edges. The purpose of the Max-Cut problem is to
divide the vertices of a graph into two types with as many edges being cut as possible, which is
generally considered to be equivalent to the Ising model as

edges =
1
4
(
∑︂

ij
Jij −

∑︂
ij

Jijσiσj). (7)

Here
∑︁

ij Jijσiσj corresponds to the lowest energy of the Ising model. The problem graph, the
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Fig. 2. Dynamics in SNN-based CIM and CIM. (a), (b) The evolution of mean amplitude
(µi) and variances (

⟨︁
∆X2⟩︁ ,

⟨︁
∆P2⟩︁) of the antiferromagnetic two-spin in CIM with the

increasing pump. (c) The trajectory of the variance (
⟨︁
∆X2⟩︁ ,

⟨︁
∆P2⟩︁) during the computation.

(d) to (f) correspond to the results for SNN-based CIM.

(a) (b) (c)

(d) (e)

Fig. 3. The dynamics of CIM and SNN-based CIM in solving the Max-Cut problem.
(a) A randomly generated example graph (top, node = 25 and edge = 75 ) and one of its
maximum cuts obtained by solving it (bottom). The red dots (blue dots) represent σi = 1
(σi = −1), and the dashed lines represent edges that were not counted towards the maximum
cut number during the cut. (b), (c) The evolution of mean amplitude (µi) and variances
trajectory (

⟨︁
∆X2⟩︁ ,

⟨︁
∆P2⟩︁) of the Ising model corresponding to (a). (d), (e) correspond to

the results for SNN-based CIM.
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solution of the problem, and the evolution results of the two models are given in Fig. 3. The
best solutions could be solved by both the two models, and the dynamic process is similar to the
case of the two spins above. The unstable oscillation in Fig. 3(d) is because the pump rate has
not approached the stable bifurcation. However, the Ising model under the corresponding spins
configuration of the system has reached the lowest energy and is kept stable.

4. Comparison of the performance between SNN-based CIM and CIM

In order to compare the effect of the dissipative pulse b in the SNN-based CIM, we numerically
studied the success rates of different γb in solving the Max-Cut problem with N=25 nodes. The
problem is run 100 times, and the optimal solution could be obtained within the running time Nt
as a successful solution, and the result is shown in Fig. 4(a). Compared with the conventional
CIM, in which γb is equal to zero, a larger γb can help the system to find the optimal solution
with a greater probability. Moreover, the curve of probability approaches the maximum value
earlier, which speeds up the calculation of the system.

(b)(a)

Fig. 4. The speed-up performance of SNN-based CIM relative to CIM and S-CIM. (a)
Dissipative rate γb versus probability of success, on the Max-Cut problem with N = 25
and computation time Nt = 10. (b) The relationship between success rate and problem size.
Generate 50 random graphs under each N, and each graph was solved 50 times to obtain a
statistical average success rate. The other parameters are j = 2, ∆t = 0.002, γb = 0.1 and
g2 = 0.1.

Further to study the computational performance of SNN-based CIM and CIM on different
scale problems, we generate 50 random graphs at each problem size. And each graph is solved by
100 times to obtain the average success rate. The randomly generated graph is a fully connected
graph, and the edge weights wij is randomly selected from 21 discrete values from −1 to 1,
wij ∈ {−1,−0.9,−0.8, . . . , 0.8, 0.9, 1}. The average solution of the success rates curves for
different problem sizes N at solution times Nt = 1 and Nt = 5 are shown by Fig. 4(b). The
variation of the solution successful rate of SNN-based CIM under different problem scales is
similar to that of CIM while showing slightly higher than that of CIM. Moreover, comparing the
success rate curve Nt = 1 with Nt = 5, it can be clearly found that the speed-up calculation of
SNN-based CIM relative to CIM and S-CIM (CIM optimized by sigmoid function [43]).

The saturation parameter g2 represents the inverse process of converting two signal photons into
a pump photon under nonlinear effects. It has been shown that the intensity of this process affects
the success rate of CIM [27,44]. Here we solve the small-scale and medium-scale problems 100
times to obtain the effect of saturation parameters on the solution success rate, and the results
are shown in Fig. 5. For CIM, a slightly increased g2 can improve the success rate, while when
g2 approaches 1, a huge saturation parameter will drastically decrease the solution success rate.
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However, the solution success probability of SNN-based CIM is less affected by a large saturation
parameter. The reason may be that the increase of the nonlinear saturation term affected by g2

in CIM will lead to the intensification of amplitude heterogeneity, and the SNN-based CIM
constantly switches between amplitude amplification and amplitude de-amplification during the
solution, which may weaken the effect of g2.

(a) (b)
N=2 N=25

SNN-CIM

CIM

SNN-CIM

CIM

g2 g2

Fig. 5. The effects of saturation parameter g2 on the success rate of the CIM algorithm.
(a) is N = 2 and (b) is N = 25. The other parameters are j = 2, ∆t = 0.002, γb = 0.1 and
Nt = 50.

5. Summary

In this work, we propose an SNN-based CIM structure and study the dynamics that behave like
spiking neurons, which can be realized by injecting the dissipative pulses anti-symmetrically
coupled to DOPO pulse on the CIM with MFB. Compared with the conventional CIM, the
oscillation region of SNN-based CIM would help the DOPOs to realize the transition between
degenerate ground states to search for the optimal spins configuration of the Ising model more
efficiently. In addition, we numerically study the variance of CIM and SNN-based CIM. It is
found that parametric amplification and de-amplification have alternately existed in the searching
process of SNN-CIM, which is different from that of CIM with only parametric amplification. The
performance of computation tested on problems with different scales show that the SNN-based
CIM has a higher probability of successful solutions than CIM, and introducing a dissipative
pulse may improve the computational speed. Furthermore, the study of saturation parameters
reveals that the SNN-based CIM is less affected by high saturation parameters, which would help
reduce the energy required for the solution [27].

In summary, we propose a new CIM architecture that can be used to solve combinatorial
optimization problems and has a higher solution success rate and speed-up effect. Although
there have been several methods, such as using squeezed light in the injection light path [45],
or using quantum adiabatic theorem to speed up the computing [46,47], our method based on
spiking neural network provides an efficient solution which is different from the above methods in
improving the calculation success rate and speed up the computing. We believe the SNN-based
CIM can bring new paths to quantum-inspired algorithms. And we propose a scheme that uses
CIM to implement spiking neurons and can adjust the connection relationship between these
neurons through FPGA, which provides a new scheme for the implement of neural computing
network.
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