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Abstract. In an era of rapid technological advancements and unprecedented data
inundation, sparsity has emerged as a key property with profound implications in
various fields. One important application of sparsity is sparse signal recovery, which
involves reconstructing signals from limited observations and is of great importance
in medical imaging, communication systems, and data compression. However,
traditional sparse signal recovery methods often require computationally intensive
algorithms, especially for large-scale problems. In this paper, we investigate the
application of the coherent Ising machine (CIM), a hybrid quantum computing
paradigm, as a novel approach to efficiently solve several sparsity-related optimization
problems, presenting significant contributions in terms of model development and
experimental validation. Our proposed models surpass existing approaches by reducing
the computational resource requirements and enhancing problem-solving capabilities.
Additionally, we also provide theoretical analysis on the performance guarantees of
the proposed models, offering insights into their reliability and robustness. To further
enhance the scalability and efficiency of the proposed model, we incorporate Benders
Decomposition to decompose large-scale problems into smaller subproblems that can
be solved more effectively. In addition, the efficiency and accuracy of the CIM-based
sparse optimization approach are demonstrated through the experiments on the CIM
platform, which highlights its potential to solve complex combinatorial optimization
problems in practical scenarios.

Keywords : Sparse Optimization, Coherent Ising Machine, Combinatorial Optimization.

1. Introduction

In today’s rapidly evolving technological landscape, characterized by an unprecedented
deluge of data, sparsity has emerged as a precious property, particularly in high-
impact applications. Sparsity, the property that a significant fraction of elements
are zero or negligible in a given representation, is a cornerstone in several fields,
ranging from signal processing [1], image processing [2] to machine learning [3]. The
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 2

concept of sparsity has garnered immense attention for its inherent capacity to represent
complex data structures succinctly. This essential attribute has played a key role in
simplifying computations, reducing memory requirements, and improving the efficiency
of algorithms in a wide variety of fields.

Sparse optimization is a branch of optimization that focuses on finding solutions
with a sparse representation. These problems typically involve ℓ0 norm regularization
or sparsity constraints, aiming to find solutions with a small number of non-zero
elements. Developing techniques that are computationally tractable to solve these
optimization problems are critical. As a special case, sparse signal recovery, the
process of reconstructing a signal from a limited set of measurements or observations,
has attracted considerable interest due to its applicability in fields such as medical
imaging [4] and communication systems [5]. In the standard compressed sensing (CS)
theory, the fundamental objective is to find the sparsest approximation, i.e., minimize
the ℓ0 norm, within the constraints of an under-determined problem, as shown in Figure
1. However, this is an NP-hard problem in general [6]. One prominent approach in CS
involves minimizing the ℓ1-norm of the signal, which serves as a convex surrogate for the
non-convex ℓ0-norm. While the direct application of ℓ0 regularization often necessitates
intricate and complex techniques, ℓ1 regularization offers a more tractable solution. It
can be efficiently addressed utilizing methods such as first-order convex optimization
and Orthogonal Matching Pursuit (OMP) [7], thereby simplifying the optimization
process significantly. However, it is proven that ℓ0-norm requires fewer measurements
for accurate signal reconstruction compared to other norms like the ℓ1-norm or ℓ2-
norm [8]. This makes it particularly advantageous in scenarios with stringent resource
constraints, such as limited storage or bandwidth. In fact, the ℓ0-norm achieves the
theoretically optimal reconstruction performance. Specifically, it guarantees successful
signal reconstruction when the compression rate α = m/n exceeds the sparsity density
ρ = k/n, i.e., α > ρ [8]. This represents the best possible performance boundary for
sparse signal recovery.

Traditional approaches for ℓ0 minimization often rely on iterative algorithms that
can be computationally demanding and time-consuming, particularly when dealing with
large-scale problems. However, recent advancements in quantum computing, with its
extraordinary processing capabilities, have opened up a promising avenue for harnessing
the potential of sparsity in intricate problem-solving endeavors. The integration of
quantum computing principles presents an exciting opportunity to expedite and enhance
the speed and accuracy of sparse signal recovery processes, thereby revolutionizing
the landscape of signal processing and data analysis. Quantum computers boast the
capability to explore an exponentially larger solution space within a fraction of the time
compared to their classical counterparts. This paper investigates the application of
coherent Ising machines (CIM), a type of hybrid quantum device, as a novel approach to
efficiently recovering sparse signals, thus addressing a fundamental challenge in various
fields.
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Figure 1: Schematic representation of the compressed sensing problem, a specific
instance within the realm of sparse optimization. The figure demonstrates
the transformation of a high-dimensional sparse signal into a lower-dimensional
measurement space.

CIM represents a notable advancement in the realm of quantum computing, which
harnesses the quantum properties of degenerate optical parametric oscillators (DOPOs)
to tackle complex optimization problems [9, 10]. Unlike conventional computers,
CIMs leverage the distinctive dynamics inherent in DOPO networks, which can be
interpreted as “artificial spins” with two states. This approach allows CIMs to
efficiently find the optimal solutions to combinatorial optimization problems, such as
sparse optimization that are computationally intensive for conventional algorithms. By
utilizing a measurement and feedback scheme to simulate arbitrary spins coupling [11],
CIMs can tackle large-scale problems invloving thousands of spins [12, 13], overcoming
the limitations of previous physical Ising machines.

Note that when the system of linear equations Ax = b is reformulated into a QUBO
model by encoding x as binary variables, the resulting QUBO matrix has O(n2K2) non-
zero entries, leading to a densely connected network. CIM is well-suited for solving
sparse optimization problems due to its ability to directly handle densely connected
networks. Unlike other quantum hardware devices, such as quantum annealers, which
typically rely on hardware-restricted local graphs like Chimera, CIM allows pairwise
coupling between any variables without requiring a minor embedding scheme. This
eliminates the need for additional resources to map densely connected networks onto
a limited graph structure. In addition, according to [14], CIM shows advantages in
handling high-density matrices. CIM also demonstrates advantages in terms of speed,
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 4

scalability, and energy efficiency as it consumes lower energy in optical systems. For
instance, it has been shown to achieve solutions three orders of magnitude faster than
Simulated Annealing (SA) [13], and its scalability has been proven by solving Ising
problems involving up to 100,000 variables.

In this paper, we delve into the optimization landscape of ℓ0-norm minimization,
a formidable challenge owing to its inherent combinatorial complexity. We explore
the adaptation and utilization of CIM for the following three ℓ0-related optimization
problems, capitalizing on their ability to traverse solution spaces with reduced
computational effort:

• Problem 1: Minimize the least-squares regularized with ℓ0 norm, specified in
Definition 1.
• Problem 2: k-sparsity constrained minimization, specified in Definition 2.
• Problem 3: Least-squares constrained by fixed sparsity, specified in Definition 3.

In many practical applications, it is sufficient to achieve a certain sparsity level
rather than seeking the absolute sparsest solution. With prior experience on the upper
bound of sparsity, we can obtain the optimal solutions by addressing the aforementioned
sparse constraint optimization problems 2 and 3. The difficulty of solving these models
lies in the sparsity constraint. Note that the sparsity-constrained problem aligns closely
with the statistical concept of feature selection [15]. In the realm of statistics, the
process of feature selection involves choosing a subset of relevant features from a larger
set to build a predictive model. The process aims to identify the most informative and
influential features while discarding those that are less significant.

In addition to the development of quantum hardware devices, the integration of
quantum and classical computational methods has proven to be a beneficial step toward
practical implementation [16–18]. Hybrid quantum-classical algorithms capitalize on
the strengths of both paradigms, combining the flexibility of classical optimization
with the power of quantum computing. Among these hybrid approaches, the quantum
Benders decomposition [19–21] algorithm has emerged as a powerful method for tackling
challenging optimization problems that involve both continuous and discrete variables.
Aonishi et al. [22] exploit the innovative divide-and-conquer strategy that is conceptually
similar to Benders’ decomposition, where the optimization of each type of variable can
be handled separately while the other type of variables are fixed. The ℓ0-norm problem
in [22] involves a quadratic cost function rather than a linear one, which deviates from
classical Benders’ decomposition that typically handles linear optimization problems. It
remains an interesting question to explore the compatibility of Benders decomposition
with sparse optimization problems and its effectiveness.

1.1. Main Results

The integration of quantum principles in solving sparsity-related challenges signifies a
progressive step toward harnessing quantum advantages for practical applications. As
summarized in Table 1, our contributions can be concluded in the following parts:
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 5

Problem 1 Problem 2 Problem 3 # of Ising spins
Ide and Ohzeki [23] ✓ ✓ ✓ 2n(K − 1)

Romano et al. [24] ✓ ✗ ✗ n(K + 1)

Section 3.1 (Model 1) ✓ ✓ ✓ n(K + 2)+slack variables∗

Section 3.3 (Model 2.1) ✓ ✓ ✗ n(K + 1)

Section 4.2 (Model 2.2) ✓ ✓ ✓ n(K + ⌈logK⌉+ 1)∗

Table 1: Comparison of current work with previous works. ∗The slack variables and
⌈logK⌉ term can be avoided using the quantum conditional gradient method in [17].

• In Section 3.1, we initially introduce a unified model, referred to as model 1,
that addresses three distinct problems concurrently. This model, where the signal
itself comprises real-valued variables while the ℓ0 norm introduces binary variables,
exemplifies the complexity inherent in such mixed-variable systems. We also present
the use of the quantum Benders decomposition algorithm to efficiently partition the
optimization process into subproblems, addressing real-valued and binary variable
components iteratively. This approach further reduces computational consumption
while maintaining the solution’s fidelity.

• In addition to the mixed-variable model, two further models leveraging fixed-point
representations of the signal are proposed. In Section 3.3, we present model 2.1 as
an extension of model 1, which exhibits a reduction in the number of required Ising
spins compared to model 1, while retaining the capability to address problems 1
and 2. Building upon model 2.1, we further refine our approach and present model
2.2 in Section 4.2, which effectively addresses problem 3 with only ⌈logK⌉ cost of
additional Ising spins per signal. Compared to the approach detailed in [24], our
proposed models exhibit a superior problem-solving capacity concerning problem
2 and problem 3, as discussed in Section 4.1. Notably, our models significantly
reduce the bit requirements in [23], enabling existing devices to tackle larger-scale
problems efficiently. It is worth mentioning that the slack variables in Model 1 and
the ⌈logK⌉ additional Ising spins per signal in Model 2.2 can be eliminated if we
employ the quantum conditional gradient method in [17].

• We also present a theoretical analysis of the performance guarantees of our proposed
model, providing a solid foundation for its reliability and effectiveness. We then
apply our model to the sparse signal recovery problem using the CIM physical
platform. The experimental results conducted on the CIM physical platform
showcase its remarkable capability to accurately recover the ground truth signal
within a millisecond-level time frame. This outcome underscores the efficiency and
efficacy of the CIM approach in addressing complex combinatorial optimization
problems within real-world scenarios.
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 6

1.2. Related Work

In the field of compressed sensing, there are three primary classes of algorithms for
sparse signal recovery: convex optimization, greedy iterative, and Bayesian inference
methods [25]. Convex optimization approaches frame the recovery as a convex problem,
solving it within a convex framework [26]. Greedy iterative algorithms iteratively
detect the non-zero elements’ positions and recover the signal based on the identified
support [27]. Bayesian inference methods, or probabilistic approaches, utilize Bayesian
reasoning to generate sparse signals with a given prior [28]. In essence, these techniques
recover sparse signals through optimization, iteration, and probabilistic inference.

In the realm of quantum algorithms, recent literature has presented innovative
approaches to address the ℓ0-regularized compressed sensing problem under the
quadratic unconstrained binary optimization (QUBO) framework. Aonishi et al.
[22] proposed a quantum-classical hybrid system comprising quantum machinery and
classical digital processors. To theoretically assess the performance of the hybrid
CIM system, [22] introduces truncated Wigner stochastic differential equations (W-
SDEs) as a model for degenerate optical parametric oscillator networks. The study
employs statistical mechanics on the W-SDEs to derive macroscopic equations. Notably,
the findings suggest that in practical scenarios like magnetic resonance imaging
data analysis, the estimation accuracy of this hybrid system may surpass that
of ℓ1-RBCS. Gunathilaka et al. [29] extended this work by introducing a chaotic
amplitude-controlled closed-loop CIM (CAC-CIM), leveraging chaotic dynamics to
escape local minima and achieve enhanced accuracy in magnetic resonance imaging
data. Building on this, Aonishi et al. [30] developed a highly versatile Cyber CIM
implemented on FPGA, enabling both open-loop and closed-loop architectures with
FP32 precision for interaction terms, and achieving computation speeds over ten times
faster than GPU implementations for applications including L0RBCS. To address the
computational challenges of CIM’s stochastic differential equations, Gunathilaka et al.
[31] introduced the mean-field CIM (MF-CIM) model, a physics-inspired heuristic solver
that simplifies differential equations, enabling efficient FPGA-based implementations
while preserving performance. These advancements collectively illustrate the evolution
of CIM technology and its practical relevance in compressed sensing tasks.

In a related vein, [32] introduces a hybrid methodology that alternates between
discrete and continuous optimization steps. Within the discrete optimization phase,
the Ising machine is employed to minimize the objective function described by the
QUBO form. The study demonstrates that even when substituting the Ising machine
with simulated annealing (SA), the method retains its functionality. In the reported
numerical experiments, SA is utilized for the discrete optimization stage. [33] investigates
compressed sensing for binary signal scenarios. This work formulates an equivalent
QUBO problem and leverages classical and hybrid quantum computing techniques based
on quantum annealing to tackle the challenge. The experimental results intriguingly
highlight a substantial enhancement in the reconstructability of problem instances
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 7

compared to traditional ℓ1 optimization methods.
The CIM [9–13, 34–36] represents a type of Ising-like hardware solver designed for

specialized optimization of Ising models. The Ising model describes spin interaction
behavior and serves as a theoretical model for addressing combinatorial optimization
problems. Finding the optimal combination from a set of numerous choices can be
defined as discovering the ground state of an Ising model with appropriate parameters.
The precursor to Ising computers involves quantum annealers (QA), which employ
superconducting qubits to emulate artificial spins. Inagaki et al. [12] introduced a
large-scale artificial spin network based on degenerate optical parametric oscillators
(DOPO), paving the way for photon-based Ising machines capable of tackling challenging
combinatorial optimization problems. Inagaki et al. [12] demonstrated that for 2000-
spin problems, encompassing random graphs, scale-free graphs, and complete graphs,
CIM could attain highly accurate approximate solutions within 5 ms, surpassing the
precision of classical computers using the GW-SDP algorithm. Notably, in complete
graphs, CIM achieved more accurate solutions compared to classical computers utilizing
simulated annealing (SA) while improving the speed by approximately 20 to 50 times.
CIM’s prowess and advantage in solving QUBO problems are evident. CIM has
been demonstrated to solve problems such as Maximum Likelihood Detection (ML-
MIMO) [37–40], error control decoding [41], MIMO beam selection [42], computing
power scheduling [43], and molecular docking [44].

2. Problem Definitions and Formulations

In sparse signal recovery, a fundamental challenge arises in accurately estimating a
sparse signal based solely on a limited set of observations. This scenario frequently
involves addressing the linear equation y = Ax, where the vector y ∈ Rm denotes
the measurement data, the matrix A ∈ Rm×n represents the observation matrix (with
m ≪ n), x signifies the sparse signal to be recovered. In [45], the authors proved a
crucial condition for signal recovery. Specifically, considering an x that adheres to a
k-sparse property (indicating that it has at most k nonzero components), it turns out
that if the restricted isometry constant δ2k satisfies the condition δ2k < 1, an intriguing
result unfolds. Namely, the minimization of the ℓ0 norm,

min||x||0 (1)

s.t. Ax = y (2)

which seeks to find the sparsest solution, yields a unique outcome in the form of x.
The problem is known to be NP-hard [6]. In addition, in many practical scenarios, the
measured signal y is perturbed by a small amount of noise n, i.e., y = Ax + n, our
models in this paper can be extended to accommodate this situation.

By formulating Eq. (1)-(2) into the QUBO form, penalty methods are
introduced to attack the NP-hard unconstrained problem as minx ||x||0 + λ · ||Ax− y||22.
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 8

Alternatively, we can consider the equivalent ℓ0-regularized problem that appears more
frequently in the literature.

Definition 1 (Minimize the least-squares regularized with ℓ0 norm). Given
measurement matrix A ∈ Rm×n(m ≪ n), measurements y ∈ Rm, we aim to recover
the sparse signal x ∈ Rn via the following objective function:

min
x
||Ax− y||22 + λ · ||x||0 (3)

The function above is to find an estimate of x that minimizes the least-squares
error, given by ||Ax−y||22. To encourage sparsity in the solution, a regularization term
is introduced using the ℓ0 norm. There are several linear models in various contexts,
including inverse problems like compressed sensing and sparse regression [46]. The
distinctive aspect here lies in the primary focus of each domain. In statistical contexts,
the focus remains on predictive accuracy, whereas in solving inverse problems, the
emphasis shifts towards unraveling the coefficients with their inherent physical meanings
intact.

Definition 2 (k-sparsity constrained minimization problem).

min ||Ax− y||2 (4)

s.t. ||x||0 ≤ k (5)

In the context of sparse signal recovery, we further examine a scenario in which an
additional constraint is imposed during the solution of the least-squares problem. The
goal is to find a sparse signal x that best fits the measurement data while adhering to
the sparsity constraint. The constraint requires that the sparsity of the solution vector
x does not exceed a given threshold k.

The k-sparsity constrained minimization problem, as depicted in equation (4)-(5),
closely relates to the concept of feature selection in statistics [15], which is formally
described as following,

min
w∈Rp

n∑
i=1

ℓ(yi,w
Txi) s.t. ∥w∥0 ≤ k, (6)

where ℓ is an appropriate convex loss function, such as the ones of ordinary least square,
i.e., ℓ(y, u) = 1

2
(y − u)2, considered in this paper. In this problem, the objective is

to minimize the sum of the loss terms, given by the function ℓ(yi,w
Txi), where yi is

the target variable associated with the i-th data point, xi is the corresponding feature
vector and w is a parameter vector to be optimized. The optimization goal is subject
to the constraint that the ℓ0 norm of the parameter vector w is less than or equal to a
predefined value k, allowing us to select only a limited number of features for our model.

Definition 3 (Least-squares constrained by fixed sparsity).

min ||Ax− y||2 (7)

s.t. ||x||0 = k (8)
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 9

The third problem is a specific variant of the second problem, where the sparsity
level is fixed at exactly k nonzero elements in the signal x. This problem is particularly
relevant when the exact sparsity level is known or when enforcing strict sparsity is crucial
for interpretability or resource-efficient signal representation.

3. QUBO Model for ℓ0 regularization

The QUBO problem belongs to a distinctive category of combinatorial optimization
challenges. Its primary objective is to find a binary vector that minimizes a quadratic
function. This specific problem class can be directly tackled using QA, positioning it as
a pivotal domain within quantum computing research. It serves as a bridge connecting
traditional optimization problems with the quantum realm. As the field of quantum
computing continues to flourish, investigating and comprehending QUBO problems
remains a cornerstone for realizing practical quantum applications in optimization.

The QUBO problem aims to identify a binary vector that can minimize a quadratic
function. The standard formulation for QUBO problems can be represented using the
equation:

min
x∈{0,1}n

xTQx

where Q is the coefficient matrix and x is the binary vector. This mathematical
framework finds broad applications in various practical scenarios, including computer
vision [47–52]; machine learning tasks such as feature selection [53, 54] and clustering
[55, 56]; complex financial models like portfolio optimization [57]. Taking into account
the compatibility of QUBO problems with coherent Ising machines, it is noteworthy that
coherent Ising machines are highly suited for addressing QUBO issues, making them an
excellent approach for optimization and sampling tasks.

3.1. A Unified Model

Consider a signal x composed of n components, where the i-th component is defined as
xi = g(δi), where δi is a binary vector of length K, representing the encoding of the
i-th component xi, i.e.,

δi = [δi1, δi2, . . . , δiK ]
T (9)

and δij ∈ {0, 1}. Here, g(·) : 2K → R is a function that maps binary vectors of length
K to real numbers. We assume that the range of xi is known, specifically, xi ∈ [x, x̄].

Let ε = minxi ̸=0 |xi|, which represents the minimum absolute value of non-zero
signal components. We introduce binary variables zi to indicate whether the i-th
component is zero, i.e., zi = 1 if xi is zero. Similarly, we define binary variables z+i
and z−i to indicate whether xi is positive or negative, respectively. To ascertain the
non-zero nature of each signal, we introduce the following constraints:
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• Bounds on signal components:

xz−i + εz+i ≤ xi ≤ x̄z+i − εz−i (10)

for all 1 ≤ i ≤ n. Note that xi ∈ [ε, x̄] when xi > 0, and xi ∈ [x,−ε] when
xi < 0. This constraint ensure that the variables zi, z+i , z−i correctly assume values
to restrict the signal xi within a specified range.
• Binary constraints:

z−i + zi + z+i = 1 (11)

for all 1 ≤ i ≤ n. These constraints ensure that exactly one out of the three binary
variables z−i , zi, and z+i are active at a time, capturing the sign of xi. We can
replace z−i using the substitution zi = 1− z−i − z+i , but it is important to note that
the values of z−i and z+i must ensure that z−i remains within the range {0, 1}. Thus,
we need to add the following constraint:

z−i + z+i ≤ 1

This can be achieved by adding a penalty term z−i · z+i to the objective function.

Now, consider the QUBO model:

minH

=min
n∑

i=1

(z−i + z+i ) (12)

+ λ ·
m∑
ℓ=1

( n∑
i=1

Aℓ,i · g(δi)− yℓ

)2

+ λ ·
n∑

i=1

z−i z
+
i

+ λ ·
n∑

i=1

[xz−i + εz+i + s
(1)
i − g(δi)]

2

+ λ ·
n∑

i=1

[x̄z+i − εz−i − s
(2)
i − g(δi)]

2 (13)

The third and fourth terms enforce the lower and upper bounds on signal
components by introducing slack variables, for example, s(h)i =

∑
j s

(h)
ij · 2j (h = 1, 2).

3.2. Quantum Benders Decomposition Algorithm

The problem can be reformulated as follows:

min
x,z

pTz (14)

s.t. Ax = b (15)

Bx+Cz ≤ h (16)

x ∈ Rn, z ∈ {0, 1}2n (17)
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 11

where z = [z−1 , z
−
2 , . . . , z

−
n , z

+
1 , z

+
2 , . . . , z

+
n ], p = 12n×1, and

B =

−diag(1n)

diag(1n)

0n×n

 , C =

diag(x · 1n) diag(ε · 1n)

diag(ε · 1n) −diag(x̄ · 1n)

diag(1n) diag(1n)

 , h =

[
02n×1

1n×1

]

The ℓ0-norm optimization problem is particularly suitable for Benders decomposition
due to its two-level structure, where the upper level involves binary decisions to select
a subset of variables, and the lower level involves solving a continuous optimization
problem based on the selected subset. This separation allows the binary selection to be
handled in the master problem, as the dependent continuous optimization is addressed
in the subproblem. The dual information obtained from solving the subproblem can
then be used to iteratively refine the master problem with Benders cuts, ensuring
convergence. By decomposing the problem, Benders’ decomposition efficiently manages
the combinatorial complexity of ℓ0-norm constraints while leveraging the scalability of
solving smaller, more focused subproblems.

Support set generation

Adding new cuts after signal reconstruction

CPU

Subproblem

CPU

Subproblem

CIM

Restricted Master Problem

CIM

Restricted Master Problem

Sparse optimization

Support set generation

Adding new cuts after signal reconstruction

CPU

Subproblem

CIM

Restricted Master Problem

Sparse optimization

Figure 2: The workflow of Quantum Benders Decomposition for sparse optimization,
where the Restricted Master Problem (RMP) is solved using CIM to generate support
sets. The Subproblem, handled on a classical CPU, introduces new cuts based on
reconstructed signals to iteratively refine the solution.

We rewrite the optimization problem as

min
z

pTz+ t

where t is the optimal objective value of the primal subproblem under a given value of
z, i.e., when the support vector of the solution x that represents the locations of the
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 12

non-zero entries in x is fixed:

(Primal Subproblem) t =min
x

0

s.t. Ax = b

Bx ≤ h−Cz

The value of t can be interpreted as:

t =

{
0, If ∃ x with given non-zero entries,

∞, Otherwise.

In this context, t = 0 indicates that the second-stage optimization problem is feasible
and has a solution for the given z, whereas t = ∞ means that no feasible solution
satisfying the linear equations Ax = b exists under the given support set.

According to the duality theory, t can be determined by solving the following dual
problem:

(Dual Subproblem) t = max
λ,ν

− λTb− νT(h−Cz) (18)

s.t. ATλ+BTν = 0, (19)

ν ≥ 0. (20)

λ and ν are the Lagrange multipliers associated with the equality and inequality
constraints, respectively. The feasible region of the dual problem is fixed and determined
by the structure of the primal constraints. When addressing the dual subproblem under
the given parameter ẑ, the algorithm will lead to one of two distinct outcomes:

• t is unbounded above. The algorithm will identify this condition and return an
extreme ray [λ†T

i , ν†T
i ] that satisfies:

λ†T
i b+ ν†T

i (h−Cẑ) < 0.

In this scenario, the objective function value f(z) is unbounded and approaches
+∞. To ensure feasibility, a new feasibility cut is added to the master problem:

λ†T
i b+ ν†T

i (h−Cz) ≥ 0. (21)

This ensures that the objective function forms an obtuse angle with each extreme
ray of the dual feasible region.
• Existence of an optimal solution. The algorithm will return the corresponding

extreme point [λ‡T
j , ν‡T

j ] along with the corresponding optimal objective value of

λ‡T
j b+ ν‡T

j (h−Cẑ). (22)

This expression forms the basis for generating the following optimality cuts

t ≥ λ‡T
j b+ ν‡T

j (h−Cz),

to tighten the master problem’s representation.
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 13

We use I and J to denote the whole set of extreme points and extreme rays
of the fixed dual feasible region. The value of t is the dual objective at the best
extreme point in I while ruling out all extreme rays in J , directions of unbounded
improvement in the dual subproblem. Benders decomposition adopts a delayed
constraint generation strategy, by using only a subset of constraints in I and J . To
this end, we introduce the Restricted Master Problem (RMPk), a relaxed version of
the original ℓ0 optimization problem. RMPk initially includes a subset of the total
constraints, which are progressively added as the algorithm identifies violations through
the subproblem. By solving RMPk, we obtain an approximate solution, which is then
refined in subsequent iterations.

(Restricted Master Problem, RMPk) min
z,t

pTz+ t (23)

s.t. λ†T
i b+ ν†T

i (h−Cz) ≥ 0, i ∈ Ik, (24)

t ≥ λ‡T
j b+ ν‡T

j (h−Cz), j ∈ Jk. (25)

The restricted master problem can be transformed to the following QUBO form:

pTz+
∑
i

2i · ti +
∑
i∈Ik

(
λ†T
i b+ ν†T

i (h−Cz)−
∑
ℓ

s
(1)
i,ℓ · 2

ℓ
)2

+
∑
j∈Jk

(
t+

∑
ℓ

s
(2)
j,ℓ · 2

ℓ − λ‡T
j b− ν‡T

j (h−Cz)
)2

,

where ti, s
(1)
j,ℓ , s

(2)
j,ℓ are binary variables for representing the slack variables.
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 14

Algorithm 1 Quantum Benders Decomposition Algorithm
1: Initialize LB← −∞, UB← +∞.
2: Define relaxed master problem RMPk of the ℓ0 norm minimization problem.
3: while UB− LB > ϵ do
4: Solve RMPk to obtain optimal solution (z̄, t̄).
5: Update LB← VALk.
6: Solve the subproblem under z̄

7: if Subproblem has an optimal solution (x̄, λ̄, ν̄) then
8: if λ̄T

j b+ ν̄T
j (h−Cz̄) ≤ t̄ then

9: (x̄, z̄) is optimal.
10: Terminate.
11: else
12: Add constraint λ̄T

j b+ ν̄T
j (h−Cz) ≤ t to RMPk.

13: Update UB← min{UB,pTz̄}.
14: end if
15: else
16: Let [λ†T

i , ν†T
i ] be the extreme ray of the Dual Subproblem found under z̄.

17: Add constraint λ†T
i b+ ν†T

i (h−Cz) ≥ 0 to RMPk.
18: end if
19: end while

The Quantum Benders Decomposition Algorithm combines classical optimization
with quantum computing to solve sparse optimization problems efficiently. By
decomposing the optimization problem into a master problem and a sub-problem,
this hybrid approach uses quantum computing to solve RMPk, accelerating the
optimization process. The relaxed master problem involves fewer decision variables and
constraints and is often simpler to solve than the original full problem. By solving this
relaxed version using quantum methods, the algorithm benefits from the parallelism
and efficiency of quantum computers, which can provide faster solutions for large
optimization problems.

3.3. A Simplified Model

In this section, we introduce a simpler model that requires fewer Ising spins for
representation. Similarly, we make the assumption that each xi is represented by a
set of K binary variables δij, where xi = g(δi) and g(·) : {0, 1}K → R. We assume that
function g(·) possesses a unique zero point and denote the zero of g(·) as

δ0 = [δ
(0)
1 , . . . , δ

(0)
K ]T,

i.e., g(δ0) = 0.
Let I0 = {j ∈ [K]|δ(0)j = 0} represent the indices of zero values in the vector δ(0),

and let I1 = {j ∈ [K]|δ(0)j = 1} represent the indices of one values. We introduce the
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 15

following constraints to characterize whether xi is equal to zero:

zi ≥ δij, j ∈ I0 (26)

zi ≥ 1− δij, j ∈ I1 (27)

The constraints above are pivotal in determining the value of zi. It is important to
observe that for the indices j within the set I0, the condition for xi does not coincide
with the zero point of the function g(·) is met if there exists at least one index j for
which δij = 1. Similarly, for the indices j in the set I1, xi deviates from the zero point
if there exists at least one xi such that δij = 0. In both scenarios, the inequalities in
question necessitate that zi must be assigned a value of 1. However, when the right-
hand sides of the inequalities evaluate to 0, it indicates that xi aligns with the zeros of
the function g(·). In this particular case, given that the objective function is designed
to minimize the cumulative sum of zi values, it is optimal to set zi to 0. This ensures
that the solution aligns with the minimization objective while adhering to the logical
structure of the constraints.

Let z = [z1, z2, . . . , zn]
T, δ = [δT

1 , δ
T
2 , . . . , δ

T
n ]

T and p = [zT, δT]T ∈ {0, 1}n(K+1).
The quadratic unconstrained binary optimization formulation of this model is given by:

min
p
H =min

p

m∑
ℓ=1

( n∑
i=1

Aℓ,i · g(δi)− yℓ

)2

+ λ ·
n∑

i=1

zi

+ λ ·
n∑

i=1

(∑
j∈I0

(δij − ziδij) +
∑
j∈I1

(1− zi)(1− δij)
)
. (28)

For notational convenience, we let

H0 =
n∑

i=1

(∑
j∈I0

(δij − ziδij) +
∑
j∈I1

(1− zi)(1− δij)
)
, (29)

the term (δij − ziδij) and (1 − zi)(1 − δij) in H0 encodes inequalities (26) and (27)
respectively.

Consider when

g(t) = wTt+ w0 (w ∈ RK , w0 ∈ R),

then the i-th signal can be expressed as xi = wTδi + w0 and consequently

xT = δT(In ⊗w) + w01
T
n , (30)

where ⊗ is the Kronecker product. The Hamiltonian of this model is represented as
follows,

H = pTQ2p, (31)

where matrix Q2 along with the detailed derivation, are provided in Appendix Appendix
A.
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 16

Example 1 (Real valued signal). In scenarios involving signal components with both
positive and negative values, let us consider the case where we define x̄ = −x ≥ 0. The
signal xi can be expressed as:

xi = 2× x̄×
( K∑

j=1

2−j × δij − 0.5
)
∈ [−x̄, x̄). (32)

For inequalities related to the L0 norm, they take the form:

zi ≥ 1− δi1 (33)

zi ≥ δij, j ≥ 2 (34)

In the context of quantum optimization, the QUBO expression is provided below:

m∑
ℓ=1

(
2

n∑
i=1

Aℓ,i · x̄ ·
( K∑

j=1

2−j · δij − 0.5
)
− yℓ

)2

+ λ ·
n∑

i=1

(
(1− zi)(1− δi1) +

K∑
j=2

(δij − ziδij)
)
+ λ ·

n∑
i=1

zi (35)

Example 2 (Non-negative signal). Consider a scenario where the signal components
are non-negative, i.e., x = 0. We let

xi = x̄×
K∑
j=1

2−j × δij ∈ [0, x̄). (36)

With the constraint that zi ≥ δij (∀i, j), the corresponding QUBO model is presented as
following:

m∑
ℓ=1

( n∑
i=1

Aℓ,i · x̄ ·
K∑
j=1

2−j · δij − yℓ

)2

+ λ ·
n∑

i=1

K∑
j=1

(δij − ziδij) + λ ·
n∑

i=1

zi (37)

3.4. Hyperparameter selection in the QUBO model

Within the QUBO model outlined earlier, an aspect that requires careful consideration is
related to the selection of the parameter λ. The impact of λ on the optimization process
is noteworthy. Larger values of λ enforce a convergence of the solution vectors to a
state of zero, while considerably diminutive values steer the model towards resembling a
least-squares estimate. Optimal results are typically achieved for intermediary λ values,
which facilitates the emergence of parsimonious models capable of faithfully recovering
the latent ground.
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 17

However, when adapting these considerations to the quantum computing domain,
the precision limitations intrinsic to quantum systems necessitate a cautious calibration
of the penalization coefficient λ. Imposing excessively stringent penalties is
counterproductive due to these precision constraints. This prompts a pivotal inquiry:
how can the minimum threshold, denoted as λmin, be determined? The overarching
strategy hinges upon the principle that solution vectors should not violate the constraints
to an extent that leads to a reduction in the objective value. Thus, the motivation
behind selecting a sufficiently substantial penalty coefficient lies in compelling solution
vectors to adhere within the feasible domain. In essence, this is to ensure that the
penalty incurred due to constraint violations surpasses the corresponding reduction in
the objective function value.

In the context of an Ising model of the objective function, defined as
minσi∈{1,−1} σ

TJσ, the energy variation ensuing from the flipping of the i-th element
of σ can be succinctly formulated as:

−4 · σi · ⟨σ,Ji⟩, (38)

where Ji denotes the i-th row of matrix J and ⟨, ⟩ represents the inner product. Note
that after normalization (e.g., after multiplying a factor of 1/minAij ̸=0A

2
ij), the variation

in the quadratic formation of the constraint is at least one, hence one possible lower
bound for λ we can set is

λmin = max
i,σ
| − 4 · σi · ⟨σ,Ji⟩|

= 4max
i,σ
|⟨σ,Ji⟩|

= 4max
i

∑
j

|Jij| (39)

4. Sparsity constrained optimization

Upon a quick examination, it becomes evident that our model in Section 3.1 can be
adapted to tackle both Problem 2 and Problem 3. Due to the constraint of brevity in
this context, we will skip the detailed discussion of these modifications here. In this
section, we will explore the task of addressing both problem 2 and problem 3 within the
framework of our established model 2.1. To effectively tackle Problem 3, modifications
and enhancements were introduced to our Model 2.1, resulting in the development of
Model 2.2.

4.1. Inequality constraint

For model 2.1 presented in Section 3.3, the variable zi does not entirely capture the true
nature of the signal xi being exactly zero. This is because when xi equals zero, zi can take
on either the value 1 or 0. As a result, this model falls short of effectively addressing
problem 3. Despite this limitation, our model demonstrates notable efficacy without
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 18

necessitating any modifications when the constraints are transformed into inequality
constraints. The rationale behind this is that when xi is non-zero, zi is necessarily set
to 1. Consequently, the quantity

∑n
i=1 zi serves as an achievable upper bound for ||x||0,

as demonstrated by the following problem formulation:

min||Ax− y||22 (40)

s.t.
n∑

i=1

zi = k (41)

xi = g(δi) (42)

zi ≥ δij, j ∈ I0 (43)

zi ≥ 1− δij, j ∈ I1 (44)

which is equivalent to problem 2.
We provide an analysis of the limitations and shortcomings of the model presented

in [24] when applied to sparsity-constrained optimization. The approach in [24] is known
as termwise quadratization [58] in the literature, which converts a monomial into a
quadratic polynomial using exactly one auxiliary variable. More specifically, there are
several negative monomials in the form of −

∏d
i=1 bi in the QUBO objective function

in [24], the domain of each bi is {0, 1}. The following two polynomials are equivalent:

−
d∏

i=1

bi and min
a∈{0,1}

{
(d− 1)a−

d∑
i=1

abi

}
. (45)

This involves representing the ℓ0-norm using quadratic terms, resulting in a formulation
in the form of higher-order unconstrained binary optimization (HUBO) when dealing
with problem 2. Consequently, an order reduction step becomes necessary, which
adds complexity to the model and increases the number of binary variables. More
importantly, the model described in [24] consistently requires the inclusion of the
quadratic polynomial containing auxiliary variables, as outlined in equation (45), within
the objective function. This aspect of the model inclines it towards seeking solutions
with smaller ℓ0-norms, which is not equivalent to addressing problem 2.

4.2. Equality constraint

In this section, we focus on augmenting model 2.1 to effectively tackle the challenges
posed by problem 3. The primary objective is to elucidate the key alterations made to
model 2.1 and the resulting QUBO formulation. To achieve this, we have incorporated
specific constraints within Model 2.1, affecting each zi as follows:

zi ≤
∑
j∈I0

δij −
∑
j∈I1

δij + |I1|,∀1 ≤ i ≤ n. (46)

This constraint ensures that if the signal xi is 0, zi must also be constrained to 0.
Correspondingly, we only need to augment the QUBO expression outlined in (A.1) with
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Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 19

the following term:

n∑
i=1

(∑
j∈I0

δij −
∑
j∈I1

δij + |I1| − zi − si

)2

+
( n∑

i=1

zi − k
)2

, (47)

where si =
∑⌈logK⌉−1

j=0 2j · sij serves as the slack variable.
By introducing these constraints and their respective QUBO representation, we can

tailor Model 2.1 to effectively address Problem 3, thus enhancing its applicability and
performance in this specific context.

4.3. Further Applications

Our model can be extended to support vector machines (SVM), a powerful class
of supervised learning algorithms used for classification and regression tasks. The
optimization problem for SVM can be formulated as follows:

λ · ||w||0 +
1

m

m∑
i=1

max(0, 1− yi(w
Txi − b)) (48)

where w is the weight vector, b is the bias term, yi are the labels of the training data xi,
and m is the number of training examples. The max operator in the objective function
can be transformed into the following quadratic objective function:

λ · ||w||0 +
1

m

m∑
i=1

ri(1− yi(w
Txi − b)), (49)

by introducing variable ri ∈ {0, 1} and the following inequality:

M(ri − 1) ≤ 1− yi(w
Txi − b) ≤Mri (50)

where M is a sufficiently large constant.
According to the previous methods, we can transform this problem into a QUBO

model, enabling us to leverage quantum computing for SVM training and inference.
This extension demonstrates the versatility of our model and its potential to address a
wide range of optimization problems beyond those discussed in earlier sections.

5. Theoretical Guarantee of Models under Fixed-Point Representation

In our proposed models, the discretization of signals using Ising spins introduces certain
limitations compared to their continuous counterparts. This quantization process can
be mathematically modeled as mapping the signals onto a finite alphabet through a
quantizer function. It inevitably leads to errors due to the reduction in the signal’s
value domain. In this section, we analyze the errors introduced by signal quantization
in these ℓ0-based models.
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Existing literature has explored the challenges in compressed sensing associated
with quantized measurements [59–61]. In conventional models, it is generally assumed
that continuous-valued measurements of an unknown signal are available. In real-world
applications, these measurements need to be converted into a limited bit representation
for purposes such as transmission, storage, and processing. In extreme cases, such
as one-bit sign measurements [62–64], only the sign of the measurement is retained,
discarding all magnitude information. Despite this, several studies have investigated the
error characteristics of ℓ1-based models under quantized measurements and analyzed the
performance of associated algorithms [59,65,66].

Our analysis in this section focuses specifically on quantization in ℓ0-based models
and evaluating the resulting reconstruction errors. This investigation aims to deepen our
understanding of the theoretical guarantee imposed by discrete representations. We first
introduce quantizer Q(·) : Rn → Rn

Q, where Rn
Q denotes the domain of the quantizer

Q(x), i.e., the set of all possible quantized representations of signals, and its worst
case distortion ϵQ, which is defined as the supremum of the squared Euclidean distance
between x and its quantized counterpart Q(x) over all possible signals in Rn:

ϵQ = sup
x∈Rn

∥x−Q(x)∥22. (51)

For example, when considering binary encoding in Example 1 and 2,

ϵQ = K · x̄2 · 2−2K ,

where K is the number of bits used in the encoding.
We can choose Q(·) to be a sparsity-preserving quantizer, which ensures nonzero

elements remain nonzero after quantization, while zero elements remain zero. In other
words, the quantizer only alters nonzero elements in a way that its nonzero nature is
retained. For example,

Q(x)i =

{
⌈2K ·xi⌉

2K
, x ≥ 0

⌊2K ·xi⌋
2K

, x < 0
,∀1 ≤ i ≤ n.

When the signal x̂ is reconstructed by solving the least square problem among
sparse quantized vectors, i.e., under a sparsity constraint S:

x̂ = argmin
x∈Rn

Q∩S
∥y −Ax∥22, (52)

we have the following conclusion.

Theorem 1. For sparsity constrained problems (4)-(5) and (7)-(8), or more generally
problem (52),

∥x̂− x∗∥22 ≤
1 + δk(A)

1− δ2k(A)
ϵQ. (53)
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Proof. As Q(·) preserves sparsity, Q(x∗) is also a feasible solution to (52). Using the
optimality of x̂, we can establish the following inequality:

∥y −Ax̂∥22 ≤ ∥y −AQ(x∗)∥22, (54)

Using the fact that y = Ax∗, the left-hand side of (54) satisfies that

∥y −Ax̂∥22 = ∥A(x∗ − x̂)∥22 ≥ (1− δ2k(A))∥x̂− x∗∥22. (55)

The inequality above follows from the following two facts:

• measurement matrix A satisfies the restricted isometry property (RIP), with
constant δk(A) ∈ [0, 1], i.e., for all v that are k-sparse,

(1− δk(A))∥v∥22 ≤ ∥Av∥22 ≤ (1 + δk(A))∥v∥22.

• ||x̂− x∗||0 ≤ 2k.

For the right-hand side of (54), we have:

∥y −AQ(x∗)∥22 ≤ ∥A(x∗ −Q(x∗))∥22 (56)

≤ (1 + δA)∥x∗ −Q(x∗)∥22 (57)

≤ (1 + δA)ϵQ. (58)

Inequality (57) is based on the fact that the quantization error x−Q(x) is k-sparse for
any k-sparse vector x and sparsity preserving Q(·).

Combining these inequalities, we obtain the following bound on the error between
the reconstructed signal and the optimal signal:

∥x̂− x∗∥22 ≤
1 + δk(A)

1− δ2k(A)
ϵQ. (59)

Theorem 2. By setting λ ≤ (1−δk(A))ϵQ
k

in the QUBO formulation (3), or equivalently,
setting a sufficiently large penalty coefficient for reconstruction error term,

||x̂− x∗||22 ≤
(3 + δk(A)) · ϵQ

1− δ2k(A)
+ ϵQ.

Proof. Let x̂ be the optimal quantized solution to the ℓ0 regularized least square
problem, i.e.,

x̂ = argmin
x∈Rn

Q

f(x) = ||Ax− y||22 + λ||x||0. (60)

Note that

||AQ(x∗)− y||22 = ||A(Q(x∗)− x∗)||22 ≤ (1 + δk(A))||Q(x∗)− x∗||22 ≤ (1 + δk(A))ϵ,
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and thus f(Q(x∗)) ≤ (1 + δk(A))ϵQ + λk ≤ 2ϵQ. We next claim that ||Ax̂− y||22 ≤ 2ϵQ,
otherwise

f(x̂) ≥ ||Ax̂− y||22 > 2ϵQ ≥ f(Q(x∗)),

which contradicts the fact that x̂ is the optimal solution to (60).
Furthermore, we have

||x̂−Q(x∗)||22 ≤
||A(x̂−Q(x∗))||22

1− δ2k(A)
=
||(Ax̂− y)− (AQ(x∗)− y)||22

1− δ2k(A)
≤ (3 + δk(A)) · ϵQ

1− δ2k(A)
,

and consequently

||x̂− x∗||22 ≤ ||Q(x∗)− x∗||22 + ||x̂−Q(x∗)||22 =
(3 + δk(A)) · ϵQ

1− δ2k(A)
+ ϵQ.

For all the three problems considered in this paper, the error induced by the
quantization, which represents the distance to the optimal solution, i.e., ∥x̂ − x∗∥22,
is in the order of O(ϵQ). For the quantization scheme in Example 1 and 2, the number
of bits K, required for coding the real-valued signal, scales as O (log 1/∥x̂− x∗∥22).

Our worst-case results above also apply for randomly distributed signals x.
In addition, when random signals are quantized into binary representations, the
quantization process introduces a form of observation noise that is inherently dependent
on the signal itself, where measurements y = A(x + nob), nob denotes the observation
noise introduced before sampling. This is different from measurement noise that is
introduced after sampling [67]. In this context, the recovery of sparse signals from
quantized signals can be viewed as a compressive sensing problem with signal-dependent
observation noise.

Existing literature has studied several aspects of compressive sensing under noisy
observations and measurements. Reeves et al. [67] shows that observation noise has less
impact on signal reconstruction compared to sampling noise or using low sampling rates.
Kipnis et al. [68] examined the relationship in distribution between the compressed
form of a high-dimensional signal x obtained via a random spherical code and the
observation of x affected by additive white Gaussian noise (AWGN). Understanding the
fundamental limits [69] and theoretical guarantees [70] of random signals quantization
in compressed sensing, with the additional presence of observation and measurement
noise, is a potential future research direction.

6. Experiment Results

The experiment is designed based on model 2.1 in Section 3.3. We performed four
experiments with varying bit lengths of 16, 46, 76, and 106 Ising spins, respectively.
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6.1. Data generation procedures

Firstly, we generate the measurement matrices with 0 and ±1 entries randomly and
independently for each experiment, following a Bernoulli distribution. The choice of
a Bernoulli distribution [71] demonstrates that with exponentially high probability,
matrices generated in this manner satisfy the restricted isometry property (RIP)
property with the number of measurements nearly linear in the sparsity level. To assess
the effectiveness of our model, we need a ground truth. Hence, we randomly generate a
set of true signal values with a predetermined number of non-zero entries, which are set
to 1, 2, 3, and 4, respectively. In the presence of both the measurement matrices and
the true signal values, we proceed to compute the measurement values. The key step
entails the utilization of these measurement values in conjunction with the measurement
matrix to reconstruct the original true signal values via CIM.
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Figure 3: Heatmaps of Ising matrices for the four problems. The Heatmaps exhibit
a spectrum of hues, signifying a varied landscape of spin interactions. With the
augmentation of the bit count, the heatmap patterns evolve to a higher density, thereby
unveiling intricate motifs that are less discernible in the context of smaller problem
instances.
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Based on the data and transformations, we can derive the corresponding QUBO and
Ising models for the optimization problem. The Ising model is another representation
of the same optimization problem and is related to the QUBO model through a simple
transformation. The heatmaps shown in Fig. 3 represent the Ising matrices, i.e., the
coefficient matrix of the Ising model, for the four different problem instances with varying
numbers of Ising spins. The intensity of the colors in the heatmaps reflects the magnitude
of the coefficients in the Ising matrices, with darker colors indicating lower values. The
visualization of Ising matrices provides insights into the complexity and interconnections
of the qubits in optimization problems.

6.2. Methodology

In our experimental setup, we conducted a comparative analysis involving CIM quantum
hardware and five classical algorithms: Orthogonal Matching Pursuit (OMP) [72], Basis
Pursuit De-Noising (BPDN) [73], and Least Absolute Shrinkage and Selection Operator
(LASSO) [74], which are classic algorithms within the field of compressed sensing, as well
as SA and Tabu Search, two classical algorithms employed for solving QUBO problems.
In the following, we give a brief introduction to the SA and Tabu algorithms.

• Simulated Annealing [75] (SA): The simulated annealing algorithm is a stochastic
optimization technique inspired by the physical process of annealing in metallurgy.
It aims to solve combinatorial optimization problems by iteratively exploring
the solution space while gradually decreasing the exploration intensity. At each
iteration, the algorithm considers a neighboring solution and probabilistically
accepts it, allowing for the exploration of both local and global optima. The
acceptance probability is determined by the difference in the objective function
values and a “temperature” parameter, which controls the degree of randomness in
the exploration process. As the algorithm progresses, the temperature is gradually
reduced, leading to a more deterministic search towards the optimal solution.
Simulated annealing can escape from local optima and its convergence properties
make it a valuable tool for tackling complex optimization problems in various
domains.

• Tabu Search [76]: Tabu search is a metaheuristic optimization algorithm
employed to solve combinatorial and discrete optimization problems. Operating
within a guided search framework, it iteratively explores the solution space by
maintaining a tabu list that records recently visited solutions and associated moves,
preventing immediate revisits to encourage diversification. Additionally, the search
incorporates intensification by leveraging aspiration criteria to override tabu status
for promising solutions. These dynamics enhance the algorithm’s ability to escape
local optima and converge towards near-optimal solutions. Tabu search offers
a robust and effective strategy for addressing complex optimization challenges
through its adaptive and memory-driven approach.
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Our coherent Ising machine (CIM) [77] is a quantum computing system that
employs laser pulses in optical fibers as its fundamental computational units, referred
to as qubits. As shown in Figure 4, we utilize a 1560-nm mode-locked fiber laser with
a 100 MHz repetition rate and a 100 fs pulse width. This laser generates 780-nm pulses
through second harmonic generation (SHG), which are then used to synchronously pump
a periodically poled lithium niobate (PPLN) bulk crystal within a fiber-ring cavity.
The fiber loop includes several key components: a coupler for injecting feedback signal
pulses, another coupler for outputting degenerate optical parametric oscillator (DOPO)
pulses for homodyne measurement, and a fiber stretcher to mitigate interference from
the external environment. The system also includes EDFA (Erbium-Doped Fiber
Amplifier) for signal amplification, BHD (Balanced Homodyne Detection) for precise
pulse measurement, AD (Analog-to-Digital) conversion for signal digitization, DA (Data
Acquisition) for data collection, PM (Phase Modulator) for phase control, and LO (Local
Oscillator) for stable reference signals.

Figure 4: Schematic diagram of a coherent Ising machine, illustrating the integrated
system for simulating quantum dynamics and its components including the pulsed laser
input, EDFA, FPGA-based feedback computation, and measurement units.

The DOPO network comprises 211 optical pulses, each representing a spin of the
coherent Ising machine. Following the analog-to-digital conversion, these pulses are sent
into a field-programmable gate array (FPGA). Given the Ising matrix, the FPGA can
calculate the feedback injection amplitude of each pulse in each round.

The measurement and feedback scheme begins with a homodyne detection stage,
where the in-phase component of each OPO pulse is measured. This measurement
captures the amplitude and phase information of the light pulses, which are critical for
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determining the state of each simulated spin. The measured data is then processed by
FPGA, which computes the feedback signal based on the predefined coupling matrix.
The computed feedback signal is subsequently used to modulate the phase and intensity
of local oscillator pulses. These modulated pulses are injected back into the optical
cavity, effectively coupling the OPO pulses according to the desired interactions. This
closed-loop feedback system ensures that the optical pulses are dynamically adjusted to
reflect the evolving state of the simulated spin system.

In the developed CIM, our approach involves transforming the problem into a
corresponding Maximum Cut (Max-Cut) problem for solving. It has been demonstrated
in the literature that finding the ground state of the Ising model without an applied
magnetic field can be reformulated as a Max-Cut problem. Indeed, for Ising formulation

σ∗ = argmin
σ
−
∑
i,j

Ji,jσiσj −
∑
i

hiσi, (61)

we can add an auxiliary spin variable sa to convert the linear terms in (61) to quadratic
terms as following,

(σ̄∗, σ∗
a) = argmin

σ,σa

−
∑
i,j

Ji,jσiσj −
∑
i

hiσiσa, (62)

and we can obtain the original optimal σ∗ via equation σ∗ = σ̄∗ · σ∗
a. Take the 76-bit

problem as an example, as shown in Fig 8, we perform the solving of the 76-bit max-cut
problem in CIM. The numerous edges connecting the nodes in the graph illustrate the
intricate coupling relationships among the variables, highlighting the complexity of our
problem.

Figure 5: Solution for 76-bit Max-cut problem. The nodes are divided into two
categories: one set of nodes is colored with blue, representing the spin values of +1,
while the other set is colored with green, representing spin values of −1.
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6.3. Analysis of the results

In Figure 6, we present a single Hamiltonian evolution of solutions obtained using CIM.
From these figures, it is clearly discernible that within a fleeting time frame of several
milliseconds, specifically, not surpassing 3.39 milliseconds, CIM converges to the ground
energy state.
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Figure 6: A single evolution of Hamiltonian values over time for different system sizes,
based on the best single shot. The main panels show the dynamics of the Hamiltonian
(y-axis) as a function of time in milliseconds (x-axis) for four distinct bit lengths: (a)
16-bit, (b) 46-bit, (c) 76-bit, and (d) 106-bit systems. The red dots indicate instances
of optimal energy states. The inset in the panel is a zoomed-in view of a specific
region of interest, highlighting the fluctuations in detail in the Hamiltonian’s trajectory.
The graphs illustrate the varying complexity and convergence to optimal states with
increasing system size.

In the CIM’s evolution curve, the time interval between adjacent data points is 2.11
microseconds. Indeed, within the fiber loop, there were 211 oscillating pulses spaced 10
nanoseconds apart between each pair of pulses. This precise arrangement results in a
transmission time of 2.11 microseconds for the optical pulses to traverse the loop. As we
observe, the Hamiltonian undergoes a gradual descent over time, and as the pump power
increases to the critical threshold for oscillation, a profound phase transition unfolds.
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Figure 7: Boxplot distributions of Normalized Mean Squared Error (NMSE) and
Accuracy for CIM across different problem sizes. The red dashed lines indicate the
mean values for each group. CIM demonstrates excellent performance with perfect
accuracy (100%) and zero NMSE for 16 spins, while maintaining high accuracy and low
NMSE as the problem size increases, showcasing its scalability and robustness in solving
sparse optimization problems.

This set of results demonstrates the efficiency of the optimization process in approaching
the optimal Hamiltonian value within a short time frame for different bit sizes.

Table 2 presents the Normalized Mean Squared Error (NMSE) and accuracy of
solutions obtained by various algorithms. The definitions for NMSE and accuracy are
as follows:

NMSE =
||xtrue − x||2

||x||2
, (63)

Accuracy =
|{i|xtrue,i = 0, xi = 0}|+ |{i|xtrue,i ̸= 0, xi ̸= 0}|

n
(64)

As shown in the table, it is evident that CIM can accurately recover the signal values
with an NMSE of 0 and 100% accuracy over different problem sizes. We also validate
the superior performance of CIM through statistical analysis of multiple experimental
runs. Figure 7 presents the boxplot distributions of NMSE and accuracy for CIM with
different problem sizes.
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Experiments Algorithm NMSE Accuracy

m = 2, n = 5, k = 1

OMP 0.0000 100.00%
LASSO 0.0008 100.00%
BPDN 0.0064 80.00%
SAshort 0.3320 80.00%
SAlong 0.1700 87.20%

Tabushort 0.5879 75.60%
Tabulong 0.2930 76.80%

CIM 0.0000 100.00%

m = 5, n = 15, k = 2

OMP 1.6000 86.67%
LASSO 1.3525 86.67%
BPDN 0.4009 33.33%
SAshort 0.8630 60.40%
SAlong 0.4109 90.53%

Tabushort 0.8958 65.73%
Tabulong 0.8184 68.53%

CIM 0.0000 100.00%

m = 5, n = 25, k = 3

OMP 0.0000 100.00%
LASSO 1.1137 84.00%
BPDN 0.0043 88.00%
SAshort 1.0475 50.08%
SAlong 1.0726 74.72%

Tabushort 1.0858 60.64%
Tabulong 0.9912 61.44%

CIM 0.0000 100.00%

m = 7, n = 35, k = 4

OMP 0.2737 94.29%
LASSO 0.7348 94.29%
BPDN 0.2705 14.29%
SAshort 1.0111 44.80%
SAlong 0.9856 68.51%

Tabushort 1.0100 59.20%
Tabulong 0.9858 58.06%

CIM 0.0000 100.00%

Table 2: Performance comparison between CIM and classical algorithms. For both SA
and Tabu, we tested two different runtimes. The runtime of SAshort is approximately
0.16s, with the four experiments taking 0.1531s, 0.1570s, 0.1616s, 0.1611s, respectively.
As for SAlong, its runtime is around 15s, and the individual experiment times are
14.96s, 15.09s, 15.78s, 15.72s. Tabushort demonstrates a runtime close to 0.1s, with
corresponding times of 0.0756s, 0.0813s, 0.0917s, 0.1276s. Lastly, Tabulong runs for
about 0.8s, and the four running time are 0.5717s, 0.7129s, 0.8149s, 1.0518s. It can be
observed that increasing the runtime improves the performance of both SA and Tabu.
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The results demonstrate the CIM’s robust performance in solving combinatorial
optimization problems. For smaller problem sizes, such as 16 spins, the CIM achieves
perfect accuracy (100%) with an NMSE of 0, indicating highly precise solutions.
Through the increases of the size, the NMSE exhibits a slight upward trend, with means
of 0.1088, 0.1990, and 0.2566 for 46, 76, and 106 spins, respectively, while maintaining
a high mean accuracy of 97.07%, 95.84%, and 95.82%. These results highlight the
scalability and competitive advantage of the current work over classical algorithms, as
further evidenced in Table 2, where CIM almost consistently outperforms traditional
methods.
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Figure 8: Time To Target (TTT) comparison of several approaches. The performance of
CIM, Tabu, and Simulated Annealing (SA) is evaluated under different problem sizes,
represented by the colors: blue (n = 5), orange (n = 15), green (n = 25), and red
(n = 35).

For those approaches with random output solutions, including CIM, SA, and Tabu
search, we evaluate the time required to achieve a solution with sufficient quality at a
high probability. Let p0 be the constant of desired success probability, here we calculate
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the following metric of time to target (TTT) [78, 79],

τ · log(1− p0)

log(1− pτ )
,

where τ represents the duration of a single shot, and pτ denotes the probability of
achieving the target in a single shot.

In our experiments, we set the expected accuracy of the three approaches as its
target value, and pτ is calculated accordingly. For CIM, each shot consists of 2000 loops,
and the time per loop is 2.11 microseconds, so the total time τ is 4.22 milliseconds. To be
rigorous, we set τ as the longest running time among the calls that exceed the specified
target for both SA and Tabu. Since the parameters for SA and Tabu are fixed in each
experiment, the runtime for these two algorithms remains relatively stable, with minimal
variation. Thus, using this method to define τ for SA and Tabu will not exaggerate their
TTT values. In the experiment, we set the desired probability p0 to 0.99.

From Table 2, CIM consistently outperforms both SA and Tabu in terms of average
accuracy and average NMSE, achieving accuracy levels above 95.8%. Despite this, as
shown in Figure 8, among the three approaches, CIM demonstrates a lower Time To
Target (TTT) compared to both SA and Tabu, indicating that CIM can reach superior
accuracy in a shorter amount of time, with high probability.

6.4. Hybrid Algorithm

In this experiment, we compare the complexity of the quantum Benders decomposition
method with direct QUBO modeling for solving sparse optimization problems. In
direct QUBO modeling, the total number of binary variables grows as least n(K + 1),
making the model increasingly complex and difficult to solve as K increases. By
iteratively refining upper and lower bounds, the Benders decomposition simulated
effectively narrows the solution space, as depicted in the figures. The gray regions
in the plots represent the gap between the bounds, which consistently decreases over
iterations, highlighting the algorithm’s convergence properties. Note that there are 2n

binary variables and one real variable, and the number of constraints for the RMP
problem is no more than the number of iterations. This leads to fewer qubits being
required when solving the RMP using quantum hardware devices, especially when using
the quantum conditional gradient method [17] for constrained programming problem
variables, compared to directly encoding the original QUBO model with n(K+1) binary
variables.

7. Discussions

A limitation shared by hardware-based solvers, including CIM, is their constrained
parameter precision [80]. While the QUBO framework theoretically operates with
continuous parameters, practical implementations on physical devices are inherently
restricted by finite numerical representations. As a result, the precision of the encoded
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Figure 9: Convergence of upper and lower bounds using the Benders decomposition
method for sparse optimization. Subplots correspond to the problem with the signal
length of n = 5, 15, 25 and 35, with K = 6 denoting the number of Ising spins required
if we encode each real variable in binary variables.

parameters is inherently limited, potentially leading to approximations that may affect
the accuracy of the solutions.

Despite these practical limitations, recent theoretical advancements have provided a
deeper understanding of CIMs. Cheng et al. [81] analyzed the stability and convergence
properties of oscillator-based Ising systems, and established conditions for the stability of
equilibrium points. These results offer an understanding of how CIMs can reliably solve
combinatorial optimization problems. Pramanik et al. [82] provides the first rigorous
theoretical analysis of the convergence properties of the optoelectronic oscillator (OEO)-
based CIMs, demonstrating that they are not merely heuristic but can be analytically
understood. By establishing bounds on the expected difference between the objective
value and the optimal solution, OEO-CIM can converge to a region around the optimum
under reasonable assumptions. Although the OEO-CIM analyzed in [82] is not identical
to the CIM used in our study, their theoretical analysis offers valuable insights into
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the convergence properties of CIMs in general. Further exploration of these theoretical
guarantees in the context of our specific CIM implementation could be an interesting
direction for future research.

8. Conclusion

In this paper, we explore the interplay between the concept of sparsity and the
cutting-edge field of quantum computing using CIM. Our contributions focus on
the development of efficient models capable of addressing multiple sparsity-related
optimization problems. We have also introduced a hybrid quantum-classical approach
to further enhance computational efficiency and bridge the gap between quantum and
classical paradigms. In addition, we have demonstrated the practical applicability of
CIM in sparse signal recovery through real-world experiments. We believe that the
fusion of these two domains opens doors to more efficient and powerful solutions with
far-reaching implications in various fields of information processing.
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Appendix A. Derivation of the QUBO model 2.1

The Hamiltonian of the model is

H =||Ax− y||22 + λ · ||x||0 +H0

=xTATAx− 2yTAx︸ ︷︷ ︸
H1

+λ · ||x||0 +H0︸ ︷︷ ︸
H2

+||y||22

Page 33 of 39 AUTHOR SUBMITTED MANUSCRIPT - QST-103434.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Unified Sparse Optimization via Quantum Architectures and Hybrid Techniques 34

By substituting equation (30) into this, we have

H1 =xTATAx− 2yTAx

=(δT(In ⊗w) + w01
T
n )A

TA((In ⊗wT)δ + w01n)

− 2yTA((In ⊗wT)δ + w01n)

=δT(In ⊗w)ATA(In ⊗wT)δ

+ w0δ
T(In ⊗w)ATA1n + w01

T
nA

TA(In ⊗wT)δ

− 2yTA(In ⊗wT)δ + w2
01

T
nA

TA1n − 2w0y
TA1n

=δT(ATA⊗W)δ + 2[w01
T
nA

TA(In ⊗wT)

− yTA(In ⊗wT)]δ + w2
01

T
nA

TA1n − 2w0y
TA1n.

In the last equation, we use the fact that

(In ⊗w)Q(In ⊗wT) = Q⊗W,

where W = wwT. Neglecting constant terms, the Hamiltonian H1 can be equivalently
expressed by minimizing the following term, utilizing the fact that

[w01
T
nA

TA(In ⊗wT)− yTA(In ⊗wT)]δ

= δTDiag(w01
T
nA

TA(In ⊗wT)− yTA(In ⊗wT))]δ

holds for binary vector δ:

H1 ≡δT[ATA⊗W + 2Diag(w01
T
nA

TA(In ⊗wT)− yTA(In ⊗wT))]δ.

Let

Q1 =ATA⊗W + 2Diag(w01
T
nA

TA(In ⊗wT)− yTA(In ⊗wT)),

then

H1 = pT

[
Q1 0

0 0

]
p.

For the Hamiltonian associated with sparsity, we have the following result,

H2 =λ ·
n∑

i=1

zi + λ ·
n∑

i=1

(∑
j∈I0

(δij − ziδij) +
∑
j∈I1

(1− zi)(1− δij)
)

=λ ·
(∑

i∈I0

zi +
n∑

i=1

∑
j∈I0

δij −
n∑

i=1

∑
j∈I1

δij

)
+ λ ·

( n∑
i=1

∑
j∈I1

ziδij −
n∑

i=1

∑
j∈I0

ziδij

)
+ λ · |I1|

=LT
0 p+ pTQ0p

=pT(Q0 + Diag(L0))p
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where L0 and Q0 consist of λ, −λ and 0. The last equation holds because p is a binary
vector. Hence

H = pTQ2p, (A.1)

where

Q2 = Q0 + Diag(L0) +

[
Q1 0

0 0

]
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