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Consensus-Based Distributed Quantum Decomposition
Algorithm for Security-Constrained Unit Commitment
Considering Optimal Transmission Switching

Dejian Huang, Wei Dai, Fang Gao,* Mingyu Yang, Yu Pan, Jiangwei Ju, and Yin Ma

To enhance controllability, flexibility, and economic performance, this
approach develops a dynamic model for the joint optimization of unit
commitment (UC) and optimal transmission switching (OTS), considering
grid topology changes. This mixed-integer nonlinear problem sees
computational complexity rise sharply with system size. A consensus-based
distributed quantum decomposition algorithm (QDA) is proposed, splitting
the problem into locally relaxed sub-problems (SPs) and
consensus-constrained master problems (MPs). Multi-stage strategy is
employed to iteratively refine solutions by incorporating cutting planes. For
MPs, quadratic unconstrained binary optimization Hamiltonians are designed
to be compatible with quantum computing, their complexity is simplified by
inserting up/down constraint Hamiltonians that eliminate auxiliary binary
variables. Leveraging quantum annealing and a photonic quantum computer,
these Hamiltonians are efficiently solved to explore optimal UC and grid
topology. Results on the 6-Bus System validate the centralized QDA, while the
consensus-based distributed QDA outperforms Gurobi9 in operational costs
and solution time for the IEEE RTS 24-Bus System. The joint UC-OTS
optimization reduces costs compared to static networks’ UC, demonstrating
the mutual influence of unit and topology optimization. This approach won
the Grand Prize of the 2024 “Challenge and Leadership Selection” Special
Competition of the 19th National Challenge Cup Competition.

1. Introduction

The unit commitment (UC) problem aims to determine the day-
ahead unit scheduling, with the objective of minimizing the
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overall operating costs of the power system
while satisfying security constraints. Re-
cent advancements have introduced quan-
tum computing (QC) to enhance UC solu-
tions, such as the divide-and-conquer UC
approach, inserting hard constraints into
hybrid Hamiltonians.[1] UC is widely ap-
plied in various domains, such as security-
constrained unit commitment (SCUC) con-
sidering N-1 contingencies to mitigate net-
work emergency overloads,[2] the schedul-
ing of service restoration and load shedding
events,[3] and UC considering the electric-
ity consumption experience of customers.[4]

The optimal transmission switching (OTS)
seeks to establish the optimal topology of
the power grid. When flow violations or
other security-related issues occur within
the grid, economical and swift switching
of transmission lines can effectively mod-
ify the grid topology to alleviate flow con-
gestion. As a flexible and reliable control
method, OTS is extensively utilized in areas
such as alleviating transmission congestion
caused by the integration of renewable en-
ergy through the flexibility of transmission
lines,[5,6] overvoltage issues,[7] wind power
integration models,[8,9] cost reduction,[10,11]

and enhancing the resilience and reliability of systems, partic-
ularly in consideration of disaster resilience and post-disaster
recovery.[12] As a crucial optimization issue in power systems,
both UC and OTS mathematical models contain a significant
number of binary and continuous variables, classifying them as
mixed-integer nonlinear programming (MINLP) problems. They
inherently exhibit characteristics of discreteness, nonlinearity,
and non-convexity, making them NP-hard problems. With the
continuous growth in electricity demand and the development
of power markets, the scale and complexity of these models are
expected to increase significantly. As a result, NP-hard optimiza-
tion problems in power systems are increasingly being addressed
through the adoption of new computational paradigms to accel-
erate their solution processes.[13,14]

The traditional static grid structure’s security verification
strategies struggle to meet the demands for power flow adjust-
ments, while the joint optimization of UC and OTS enables
coordinated control of generator scheduling and grid topology.
By constructing an optimal grid topology and corresponding
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generation planwithout compromising the supply to nodal loads,
it is possible to significantly reduce the operational costs of the
system while also enhancing the grid’s reliability in the face of
unforeseen incidents. This approach aligns with the direction
of smart grid development. Nonetheless, the joint optimization
model for UC and OTS necessitates the introduction of a sub-
stantial number of binary variables to represent the on/off state
of unit, as well as the state of transmission lines. This results
in an “exponential explosion” issue as the model scales, posing
significant computational challenges for classical computers. De-
spite these challenges, Oren et al. [15] proposed a joint optimiza-
tion model for UC and OTS that ensures N-1 reliability. This
model decomposes the joint optimization into two groups of sub-
problems (SPs), which are solved iteratively, demonstrating that
optimizing network topology can enhance grid scheduling. How-
ever, the iterative method that alternately inputs binary and con-
tinuous variable solutions may lead to convergence at local op-
tima, often requiring a substantial number of iterations. Li et al.
[16] emphasized the importance of OTS for flexible transmission
in UC but noted that it could also cause significant system distur-
bances, thereby increasing optimization difficulty. Consequently,
OTS is regarded primarily as a corrective measure to mitigate
or eliminate power flow violations in emergencies. To circum-
vent the non-convexity induced by binary variables, Neill et al. [17]

fixed all integer variables to their optimal values and constructed
a dual problem for the N-1 reliable joint optimization for UC
and OTS that contained only continuous variables, conducting
an economic analysis based on dual concepts. To align the joint
optimization model of UC and OTS more closely with the practi-
cal construction of smart grids, Shafie-Khah et al. [18] introduced
constraints on the number of transmission line switches and pro-
posed a UC model that considered dynamic thermal ratings of
transmission lines. They decomposed the original problem into
two relaxed SPs that only considered partial constraints based on
constraint simplification, iteratively solving to obtain a final solu-
tion. However, their simplified model assumes linear costs and
does not account for intelligent transmission switching under
emergency conditions. Additionally, the decomposition and iter-
ation framework does not consider the interaction between UC
andOTS. This results in a somewhat simplistic cutting plane con-
struction for each iteration, making it difficult to guarantee algo-
rithm convergence. Lin et al. [19] introduced a joint optimization
model for UC and OTS that incorporated short-circuit current
constraints. This model defined the impact of each transmission
line’s operational state on short-circuit current as the sensitivity
of the short-circuit current for that system. They constructed lin-
earized short-circuit current constraints in the form of Benders
cutting planes and utilized a stepwise solving strategy to solve the
model within a reasonable time. However, their simplifiedmodel
only provides a fixed network topology with a single transmission
switching state, failing to achieve hourly dynamic network topol-
ogy optimization, thus somewhat avoiding the complexity associ-
ated with optimizing transmission line topology. Shahidehpour
et al. [20] introduced OTS into UC to reduce transmission vio-
lations and lower operational costs. However, their model over-
looked the OTS in post-emergency scenarios, i.e., the real-time
topological changes in response to sudden incidents. Street et al.
[21] built upon this model by incorporating an emergency switch-
ing model for transmission lines after incidents. They achieved

the joint optimization through an improved exact nested column-
and-constraint generation algorithm. Nonetheless, this precise
decomposition technique remains centralized, failing to signif-
icantly reduce the optimization complexity of the SPs and the
master problems (MPs), both of which are NP-Hard MINLPs.
This leads to combinatorial explosion issues and considerable
optimization difficulty, resulting in low computational efficiency.
He et al. [22] proposed a method that simultaneously considered
transmission topology and physical vulnerability indices. By uti-
lizing graph theory-based flow algorithms, their approach identi-
fied potentially overloaded lines after transmission line faults, ef-
fectively prioritizing emergencies to achieve safer and more eco-
nomical solutions.
The aforementioned works have significantly advanced the re-

search on the joint optimization of UC and OTS, highlighting
the interrelationship between grid topology and unit scheduling
while continuously enriching the model’s constraints to align
with practical operational requirements. However, two main is-
sues persist: 1) There has been insufficient improvement in the
solving efficiency of the joint optimization model, along with
challenges in ensuring algorithm convergence. Although much
of the literature employs a strategy of decomposing the original
problem into multiple SPs, this process often fails to leverage
the interactions between UC and OTS, leading to low efficiency
in decomposition. Furthermore, the resulting SPs may still be
classified as MINLPs, posing substantial optimization difficul-
ties; 2) The simplificationsmade to the joint optimizationmodel,
such as neglecting real-time topological changes due to sudden
incidents or considering only static topology models to address
exponential search space issues, hinder the ability to effectively
manage joint optimization problems involving complex system
constraints. These challenges ultimately stem from the difficul-
ties classical computation faces in addressing the “exponential
explosion” problem. As a new computational paradigm, QC may
offer a potential solution. The rapid development of quantum al-
gorithms and the availability of real quantum hardware have pro-
pelled QC into various fields. Utilizing QC to tackle various opti-
mization problems has emerged as a compelling research topic.
QC is an emerging computational paradigm with significant

development potential and prospects. It leverages quantum prop-
erties such as superposition and entanglement to perform com-
putations, demonstrating quantum advantage in solving prob-
lems like random quantum circuit sampling,[23,24] Gaussian bo-
son sampling,[25,26] and combinatorial optimization.[27,28] Quan-
tum computers operate according to the laws of quantum me-
chanics, with the fundamental unit being the qubit. n qubits can
store information analogous to 2n classical bits, and they can
also operate in parallel, reducing computational complexity and
substantially enhancing computational power for specific prob-
lems. Currently, quantum computers are categorized into uni-
versal quantum computers and specialized quantum comput-
ers designed for specific computational tasks. Universal quan-
tum computers operate on the quantum gate model,[29,30] im-
plementing computations through a sequence of quantum gate
operations on qubits. These quantum computers can execute
a variety of standard quantum algorithms, including Shor’s al-
gorithm for integer factorization,[31] Grover’s algorithm for un-
structured database search,[32] and the HHL algorithm for solv-
ing linear equations.[33] However, these quantum computers re-
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quire extremely low-temperature environments and, in the cur-
rent noisy intermediate-scale quantum era,[34] the number of
available qubits is insufficient to solve practical problems. There-
fore, classical computing is often utilized to process information,
reducing the demands on the number of qubits and the depth of
quantum circuits. This has led to the development of many hy-
brid quantum-classical algorithms, such as the improved HHL
algorithms HIPEA [35] and HMPEA,[36] the Variational Quantum
Eigensolver,[37] and the Quantum Approximate Optimization
Algorithm.[38] Typical specialized quantum computers include
quantum annealer based on the quantum adiabatic theorem [39]

and coherent Ising machine (CIM) based on optical systems,[40]

These computational platforms can be applied to solve combi-
natorial optimization problems based on the Ising model [40,41]

and have been successfully implemented on real quantum hard-
ware. Quantum annealers leverage the tunneling effect of quan-
tummechanics to find global optimamore rapidly and can, under
certain conditions, converge to global optimal values more easily
than classical annealers. Quantum gate-based QC is polynomial-
time equivalent to adiabatic quantum computation.[42] CIMs uti-
lize a dissipative architecture based on optical quanta to per-
form computations by constructing networks connected by op-
tical pulses, demonstrating strong resistance to environmen-
tal noise and errors. Combinatorial optimization problems can
be equivalently transformed into Quadratic Unconstrained Bi-
nary Optimization (QUBO) problems,[43] typically represented
as min XTQX , where X ∈ {0, 1}n, Q ∈ Rn×n. Quantum anneal-
ers and CIMs exhibit high computational efficiency in solving
QUBO problems and have already been applied in various practi-
cal scenarios, including chemical synthesis,[44–46] vehicle and job-
shop scheduling,[47,48] and financial investments.[49–51] In partic-
ular, CIMs have shown remarkable scalability and efficiency in
addressing optimization problems in real-world applications.[52]

To enhance the solving efficiency of the joint optimization
model for UC and OTS under security constraints, this work pro-
poses a consensus-based distributed quantum decomposition al-
gorithm (QDA). This algorithm employs a multi-stage optimiza-
tion strategy that synchronously and in parallel constructs cutting
planes across different buses, effectively providing a day-ahead
unit scheduling and the corresponding optimal grid topology for
power flowmanagement and system reliability. The specific con-
tributions of this paper are as follows:

1) For the joint optimization problem of UC and OTS, we in-
troduce a centralized QDA. This algorithm decomposes the
joint optimization problem into an upper UC module that
optimizes unit scheduling, a lower OTS module that ad-
dresses flow constraints and topology optimization, and a con-
tingency verification module that considers unexpected sce-
narios. Iterative interactions between these modules are fa-
cilitated by adding cutting planes, ultimately achieving dy-
namic grid topology switching to avoid security constraint vio-
lations while reducing operational costs. Experimental results
confirm the interdependence between generator scheduling
and network topology, demonstrating that effective transmis-
sion line switching can significantly lower system operational
costs.

2) In the upperUCmodule, we utilize dual information from the
SP of UC to construct optimality and feasibility cutting planes

based on a generalized Benders framework. In the lower OTS
module, inspired by sensitivity analysis, we define the impact
of transmission switching state on system operational costs
or flow violations as sensitivity and construct linear optimality
and feasibility cutting planes based on this analysis. We pro-
pose a method to convert these cutting planes into a QUBO
model (cutting plane Hamiltonian) suitable for QC. The MP
formed by these cutting planeHamiltonians can be efficiently
solved using quantum annealing algorithms on the D-Wave
platform or our proprietary photonic quantum CIM, provid-
ing a viable QC paradigm for optimizing power system op-
erations and verifying the feasibility and effectiveness of the
quantum algorithm on real quantum machines for the joint
optimization problem.

3) Building on the centralized algorithm, we further propose
a consensus-based distributed QDA with higher solving ef-
ficiency. This algorithm uses the phase angles and interac-
tive power of neighboring buses as consensus variables, al-
lowing each bus to independently and in parallel solve local
problems with consensus constraints. It constructs local cut-
ting plane Hamiltonians, decoupling the MP into local MPs
at the bus level. The local MPs are smaller in scale than the
centralized MP, and the parallel-solving characteristic signif-
icantly enhances the solving efficiency of the joint optimiza-
tion problem. The consensus-based distributed QDA demon-
strates improved operational costs and solving speed in the
IEEE RTS 24-Bus System compared to traditional commer-
cial solvers like Gurobi9.

2. Joint Optimization Model of UC and OTS

The UC problem is responsible for generating a day-ahead unit
scheduling that ensures both economic efficiency and system se-
curity, while the OTS aims to determine the optimal power sys-
tem topology. When the grid topology is altered, the previously
planned unit schedule might no longer be applicable, resulting
in potential interdependencies between the grid topology and the
unit dispatch plan. Additionally, the model must account for day-
ahead contingency constraints to ensure the system’s stability
and reliability. This joint optimization model involves both con-
tinuous variables, such as unit output and line power flows, and
discrete variables, like unit on/off state and transmission switch-
ing state, making it a MINLP problem, which can be formulated
as follows:

min
P,U

NT∑
t=1

[
NG∑
i=1


(
Pi,t

)
+ 

(
Ui,t

)
+

NL∑
l=1


(
Zl,t

)]
(1)


(
Pi,t

)
= 𝛼i ⋅ P

2
i,t + 𝛽i ⋅ Pi,t (2)


(
Ui,t

)
= 𝛾i ⋅Ui,t (3)


(
Zl,t

)
= 𝜅l

(
1 − Zl,t

)
(4)

s.t.
∑

i∈NG(n)
Pi,t −

∑
l∈NLfrom(n)

P⃗l,t +
∑

l∈NLto(n)
P⃗l,t = Dn,t,∀n,∀t (5)

Pmin
i ⋅Ui,t ⋅ Ũ

c
i,t ≤ Pi,t ≤ Pmax

i ⋅Ui,t ⋅ Ũ
c
i,t,∀i,∀t (6)
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t−1∑
j=t−Ton

i

Ui,j ≥ Ton
i Ui,t−1

(
1 −Ui,t

)
, ∀i,∀t ≥ Ton

i (7)

t−1∑
j=t−Toff

i

(
1 −Ui,j

)
≥ Toff

i Ui,t

(
1 −Ui,t−1

)
, ∀i,∀t ≥ Toff

i (8)

Ui,t ∈ {0, 1} , Pi,t ≥ 0, ∀i,∀t (9)

NG∑
i=1

Ũc
i = NG − 1, ∀c ≥ 1 (10)

−Pmax
l ⋅ Zl,t ⋅ Z̃

c
l,t ≤ P⃗l,t ≤ Pmax

l ⋅ Zl,t ⋅ Z̃
c
l,t, ∀l,∀t (11)(

𝜃n,t − 𝜃m,t

)
∕xl − P⃗l,t ≤ M

(
2 − Zl,t − Z̃c

l

)
, ∀l (n → m) ,∀t (12)(

𝜃n,t − 𝜃m,t

)
∕xl − P⃗l,t ≥ −M

(
2 − Zl,t − Z̃c

l,t

)
,∀l (n → m) ,∀t (13)

NL∑
l=1

(
1 − Zl,t

)
≤ J, ∀t (14)

∑
l∈NL(n)

Zl,t ≥ 1, ∀n,∀t (15)

Zl,t ∈ {0, 1} , ∀l,∀t (16)

𝜃min
n ≤ 𝜃n,t ≤ 𝜃max

n , ∀n,∀t (17)

NL∑
l=1

Z̃c
l = NL − 1. ∀c ≥ 1 (18)

Here, NG, NT, and NL represent the set of units, time peri-
ods, and transmission lines, respectively.NG(n) denotes the set of
units located at bus n; NLfrom(n), NLto(n) and NL(n) represent the
sets of outgoing, incoming, and total transmission lines at bus n,
satisfying NL(n) = NLfrom(n) ∪ NLto(n); The continuous variable

Pi,t indicates the output power of unit i at time period t; P⃗l,t rep-
resents the power flow on transmission line l at time period t;
𝜃n,t denotes the phase angle at bus n at time period t; The binary
variable Ui,t indicates the on/off state of unit i at time period t;
Ui,t = 1 when the unit is online, and Ui,t = 0 when it is offline;
The binary variable Zl,t represents the state of transmission line
l at time period t; Zl,t = 1 when the line is connected, and Zl,t = 0
when it is disconnected; Parameters 𝛼i, 𝛽i, and 𝛾i correspond to
the quadratic fuel cost coefficient, linear fuel cost coefficient, and
startup cost coefficient of unit i, respectively; Parameter 𝜅l de-
notes the switching cost of transmission line l; Parameters Pmin

i
and Pmax

i represent the minimum and maximum output power
limits of unit I; The binary parameter Ũc

i,t indicates the state of
unit i during contingency k at time period t, with c = 0 repre-
senting the normal operation; Parameters Ton

i and Toff
i specify

the minimum up and down times for unit I; Parameter Pmax
l rep-

resents the maximum power flow limit of transmission line l;
The binary parameter Z̃c

l,t indicates the state of transmission line
l during contingency k at time t, with c = 0, Z̃0

l,t = 1 representing

the normal operation; xl denotes the reactance of transmission
line l; M is a sufficiently large constant introduced by the big-M
method, ensuringM ≥ (𝜃max

m,t − 𝜃min
n,t )∕xl.

The objective function (1) of the model aims to minimize the
total cost of the power system, comprising the generation fuel
cost  of the unit, the startup cost  of the unit, and the switch-
ing cost of the transmission lines. The constraints of themodel
include the UC constraints Equations (5–10) and the OTS con-
straints Equations (11–18), which take into account day-ahead
contingencies. Constraint (5) represents the power balance at
each bus, ensuring that the total power generated by the unit at
the bus plus the incoming and outgoing power flows equals the
load at that bus. The unit capacity constraint (6) defines themaxi-
mum andminimum output power of the unit under contingency
c. Constraints (7) and (8) enforce the minimum up and down
times for the unit, ensuring the unit maintains on/off state for
specified durations. Equation (9) defines the domain of the UC-
related variables. Constraint (10) specifies the unit contingency
constraint, which ensures that under an unusual event, at most
one unit is offline. The transmission line power flow capacity
constraint (11) sets the upper and lower bounds on power flow
through the lines under contingencies. Power flow constraints
(12) and (13) follow Kirchhoff’s laws, using the DC power flow
equations to model the power flows in the system. The upper
bound constraint (14) limits the number of disconnected lines
within the structure. The anti-islanding constraint (15) ensures
that at least one transmission line connects to each bus when all
corresponding lines are capable of switching. Equation (16) de-
fines the domain of the transmission line state variables, while
Equation (17) defines the domain of the bus phase angle vari-
ables. Finally, constraint (18) specifies the transmission line con-
tingency condition, ensuring that in a contingency scenario, at
most one transmission line is disconnected.

3. Consensus-Based Distributed QDA

The consensus-based distributed QDA is a distributed version of
the centralized quantum decomposition approach. It introduces
consensus among units or buses into the optimal SPs of UC, op-
timal SPs of OTS and relaxed SPs of OTS within the centralized
algorithm. The primary distinction between the distributed and
centralized approaches lies in the model construction and solu-
tion process of local optimization SPs, while their overall frame-
work remains identical, as illustrated in Figure 1 This process
mainly decomposes the joint optimization problem into an upper
UC module, a lower OTS module, and a contingency validation
module, taking into account the interactions among these three
components. The upper UC module generates the unit schedul-
ing, which is then passed to the lower OTS module to determine
the optimal grid topology that complies with safety checks while
fitting the unit scheduling. If the lower OTSmodule consistently
fails to meet safety validation criteria, a security cutting plane for
the unit is constructed and returned to the upper module to ad-
just the unit scheduling. This iterative process gradually aligns
unit scheduling and grid topology towards a near-global optimal
solution. The contingency validationmodule acts as a reactive in-
telligent error correction mechanism to prevent security issues
arising from N-1 contingencies. When the process returns to the
lower OTS module after passing through the contingency valida-
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Figure 1. Flowchart of centralized or consensus-based distributed QDA.

tion module, the optimal SPs of OTS, relaxed SPs of OTS, and
relaxed SPs of bus change the related constraints into a variant
form considering a contingency situation, hence these SPs are
prefixed with “contingency” to denote their altered formulations.
After completing the inner and outer iterative loops between

the upper and lower modules, the optimal solution for unit
scheduling and grid topology under normal conditions can be
obtained. If N-1 contingencies are considered, this optimal so-
lution is passed to the contingency validation module for fea-
sibility checks. Should the solution fail the validation, the pro-
cess returns to the lower-level module to adjust the grid topol-
ogy through its internal iterations. At this stage, all SPs pre-
fixed with “contingency” in the lower module will have their
relevant constraints modified to account for the specific con-
tingency scenario. If the contingency still cannot be resolved,
the process returns to the upper UC module to further refine
the unit scheduling. The MPs of UC and OTS modules are re-
sponsible for optimizing the binary decision variables, which are
the unit on/off state and transmission line state. These are dis-
crete optimization problems where the computational challenge
arises from the combinatorial explosion of the feasible solution
space as the number of discrete variables increases. The com-

putational complexity of solving these combinatorial optimiza-
tion problems grows exponentially with the number of discrete
variables. Given the potential of QC to accelerate the solution
of constrained combinatorial optimization problems, we refor-
mulate the MPs of UC and OTS modules into a QUBO format
Hamiltonian, making them amenable to QC techniques. This
transformation allows us to leverage quantum annealers and
CIMs, which possess quantum advantages, to efficiently solve
these problems. To enhance the decomposition efficiency, we in-
troduced a synchronous distributed solving strategy based on
the centralized QDA mentioned above, leading to the develop-
ment of the consensus-based distributed QDA. Unlike the cen-
tralized approach, this distributed algorithm employs consensus
mechanisms across adjacent buses to decompose SPs into local
SPs, thereby generating local cutting planes to formulate local
MPs. Specifically, the consensus-based distributed QDA intro-
duces consensus variables (inter-bus power exchanges and phase
angles) into the optimal SPs of UC, optimal SPs of OTS, and re-
laxed SPs of OTS. This approach allows these SPs to be decoupled
at the bus level. The addition of consensus constraints ensures
that the consensus variables gradually converge through iterative
consensus processes. The dual variables, continuous variables,
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Figure 2. Simplified topology diagram of the power grid for buses with
unit. The red solid lines represent the assumed adjacency relationships
between the buses.

system costs, and constraint violations derived from the local SPs
can be used to construct local cutting planes, further ensuring
the decouplability of the MPs. As a result, the number of binary
variables in the decoupled local MPs is significantly reduced, fa-
cilitating a more efficient solution process.

3.1. The Upper UC Module

The upper module is responsible for determining the day-ahead
optimal unit scheduling, aiming to minimize the operational
costs of the power system by optimally managing the on/off state
Ui,t and the output power Pi,t of the unit. This module decom-
poses the problembased on the types of variables involved, result-
ing in the formulation of the local optimal SP of UC, the relaxed
SP of UC, and the local MP of UC. The local optimal SP and re-
laxed SP focus on solving continuous variables Pi,t and slack vari-
ables Si,t, generating dual information that can be used to con-
struct cutting planes. These cutting planes are then returned to
the local MP, refining its feasible region to enhance the binary
solution Ui,t.
1) Consensus-based local optimal SP of UC:
The local optimal SP of UC is responsible for solving contin-

uous variables Pi,t while simultaneously validating the feasibility
of the unit on/off state Ûi,t. Therefore, this module only needs to
consider buses equipped with units. Based on the potential trans-
mission line topology, the connections between these buses are
assumed, introducing the power exchange between neighboring
buses as consensus variables. Taking the simplified power grid
topology shown in Figure 2 as an example, the dashed red boxes
represent buses equipped with units (B1, B2, B6), while the solid
red lines indicate the assumed adjacency between these buses.
We focus solely on the adjacency relationships among buses that
have units, decomposing the optimal SP of UC into a local op-
timal SP specific to each bus equipped with units. For instance,
the local optimal SP at bus n is:

min
NG(n)∑
i=1

NT∑
t=1


(
Pi,t

)
+
∑

m∈ad(n)


(
P⃗n
n,m, P⃗

+
n,m

)
(19)

 = 𝜆nn,m

(
P⃗n
n,m − P⃗+

n,m

)
+

𝜌nn,m

2

(
P⃗n
n,m − P⃗+

n,m

)2
(20)

s.t.
NG(n)∑
i=1

Pi,t ±
∑

m∈ad(n)

P⃗n
n,m = Dn,t, ∀t (21)

Pmin
i Ûi,t ≤ Pi,t, ∀i ∈ NG (n) ,∀t (22)

Pi,t ≤ Pmax
i Ûi,t. ∀i ∈ NG (n) ,∀t (23)

Since the binary variables Ui,t = Ûi,t are predetermined fixed
inputs, and the topology among buses equipped with units is
also assumed to be static, the local optimal SPs of UC are for-
mulated as nonlinear programming problems. NG(n) represent
the set of units installed at bus n. 𝜆nn,m and 𝜌nn,m denote the dual
variables and penalty coefficients of the consensus constraints,
respectively. The superscripts n and subscripts n, m together in-
dicate the copies of variables associated with bus n and its neigh-
boring busm in the local SP of bus n. P⃗+

n,m is the global consensus
variable, represents the power flow between buses n andm, while
P⃗n
n,m is the local consensus variable, which is the copy of the power

flow in the local SP at bus n.
The consensus constraint P⃗n

n,m − P⃗+
n,m = 0 is treated as a soft

constraint in Equations (19 and 20), i.e., consensus deviation,
and incorporated into the objective function. The objective func-
tion is then minimized to ensure that the local consensus vari-
ables P⃗n

n,m gradually converge to the global consensus variables

P⃗+
n,m. The power balance constraint in Equation (21) accounts for

the consensus power flow, with the sign of the consensus vari-
ables P⃗n

n,m determined by the assumed bus connections. This sign
reflects the direction of power flow between bus 𝑛 and its neigh-
boring busm, −P⃗n

n,m indicating the power flow from the local bus

n to its adjacent bus m, and vice versa for +P⃗n
n,m. Since the di-

rection of power flow is not restricted, the assumed connections
between buses do not affect the solution process. Equations (22
and 23) define the unit output power capacity constraints of bus
n. The update rules for the global consensus variables, the dual
variables of the consensus constraints, and the penalty coeffi-
cients are as follows:

P⃗+
n,m

(k + 1) =
P⃗n
n,m

(k) + P⃗m
n,m

(k)

2
(24)

𝜆nn,m (k + 1) = 𝜆nn,m (k) + 𝜌nn,m ⋅
(
P⃗n
n,m

(k) − P⃗+
n,m

(k)
)

(25)

rnn,m (k) =
|||P⃗n

n,m
(k) − P⃗+

n,m
(k)||| (26)

here, k denotes the number of consensus iterations. When the lo-
cal consensus variables are sufficiently close to the global consen-
sus variables (i.e., rnn,m(k) = 0), the neighboring buses equipped
with units are considered to have reached consensus, indicating
that they have sufficiently approached the global optimal solution
of the optimal SP of UC. The sum of the objective functions of
all local optimal SPs (Equation 19) effectively represents an upper
bound on the optimal solution of the original UC problem.
If the optimal SP of UC is feasible and consensus is achieved

among all neighboring buses, the optimal local dual variables âi,t
and b̂i,t of constraints (22) and (23), as well as the optimal local
continuous variables P̂i,t, can be obtained. These values are then

Adv. Quantum Technol. 2025, e2500241 © 2025 Wiley-VCH GmbHe2500241 (6 of 27)

 25119044, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/qute.202500241 by G

uangxi U
niversity, W

iley O
nline L

ibrary on [30/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

used to construct the local optimality cutting planes of UC:

h ≥

NG(n)∑
i=1

NT∑
t=1


(
P̂i,t

)
+ âi,t

(
Pmin
i Ui,t − P̂i,t

)
+ b̂i,t

(
P̂i,t − Pmax

i Ui,t

)
=

NG(n)∑
i=1

NT∑
t=1

CUC,op + FUC,op
i,t ⋅Ui,t, ∀n (27)

here, h represents the feasible region of the local optimality cut-
ting plane of UC. âi,t and b̂i,t are the dual variables associated with
the unit output power capacity constraints (Equations 22 and 23),
while P̂op

i,t denotes the solution of the continuous variables ob-
tained from solving the local optimal SP of UC. The term CUC,op

is a constant in the cutting plane, and FUC,op
e,i,t represents the coef-

ficient of the unit on/off state variable Ui,t in the cutting plane.
This cutting plane reveals the optimality of the proposed solution
with respect to the original joint optimal problem; therefore, we
incorporate it into the local MP of UC as a local lower bound on
the optimal solution of the UC problem.
2) Relaxed SP of UC:
If the optimal SP of UC is found to be infeasible, continuous

slack variables (S2i,t, S
1
i,t) are introduced to quantify the extent of

the violation for unit i concerning the power output constraint
(Equation 6) during time period t. This leads to the construction
of the original relaxed SP of UC. Similar to the local optimal SP of
UC, the original relaxed SP of UC utilizes the average consensus
method decomposition to construct the local relaxed SP of UC,
which is solved independently by each bus. Taking bus n as an
example, the local relaxed SP of UC is:

min𝜇′ =
NG∑
i=1

NT∑
t=1

(
S1i,t + S2i,t

)
+
∑

m∈ad(n)


(
P⃗n
n,m, P⃗

+
n,m

)
(28)

s.t.
NG(n)∑
i=1

Pi,t ±
∑

m∈ad(n)

P⃗n
n,m = Dn,t, ∀t (29)

Pmin
i Ûi,t − Pi,t − S1i,t ≤ 0, ∀i ∈ NG (n) ,∀t (30)

Pi,t − Pmax
i Ûi,t − S2i,t ≤ 0. ∀i ∈ NG (n) ,∀t (31)

S1i,t, S
2
i,t ≥ 0, ∀i ∈ NG (n) ,∀t (32)

where S1i,t are the non-negative slack variables for the unit min-
imum power constraint (22), and S2i,t are the non-negative slack
variables for the unit maximum power constraint (23). The con-
sensus soft constraint (P⃗n

n,m, P⃗
+
n,m) in the objective function is

similar to Equation (20). The update rules for the global consen-
sus variable, dual variables, and penalty coefficient of the consen-
sus constraint follow Equations (24–26).
To avoid the complex consensus iterations between multiple

local relaxed SPs and achieve a faster optimal allocation of relaxed
variables, we construct a relaxed variable objective function that
reflects cost information. Additionally, the Karush-Kuhn-Tucker
(KKT) conditions of the original relaxed SP are included as one of
the constraints, and the constraint of relaxation variables is also

considered, leading to the improved consensus-inspired relaxed
SP for UC: )

min𝜇 =
NG∑
i=1

NT∑
t=1


(
S1i,t
)
+

(
S2i,t
)

(33)

s.t. Karush − Kuhn − Tucker conditions, (34)

S2i,t ≤ Pmax
i

(
1 − Ûi,t

)
. ∀i,∀t (35)

The objective function (33) incorporates the generation cost co-
efficients to achieve the minimum violation cost 𝜇 under the cur-
rent unit on/off state, ensuring that the slack variables are prefer-
entially allocated to units with lower generation costs. Since the
original relaxed SP satisfies convex optimization conditions, its
optimality is ensured by including the KKT conditions as con-
straints (34) in the consensus-inspired relaxed SP, as detailed in
Appendix A. Equation (35) represents the relaxation limitation
constraints, which ensure that deviations are only allocated to
units in the off state, with the maximum deviation constrained
by the maximum output limit.
In the UC problem, the original relaxed SP of UC often results

in multiple feasible solutions for continuous variables that cor-
respond to the same minimum violation. This occurs because
the original relaxed SP only minimizes the total system viola-
tion, which means minimizing the sum of the slack variables.
As a result, the corresponding single global feasibility cutting
plane essentially reduces the Boolean polytope formed by the
feasible region of the global binary variables. In contrast, the
newly constructed consensus-inspired relaxed SP of UC utilizes
the KKT conditions of the original relaxed SP as constraints to
ensure the optimality of the system violation. Additionally, it in-
corporates an economic-oriented violation cost objective function
and bounds on the slack variables in constraints, which guide
the allocation of slack variables across different buses to align
with the generation cost characteristics of the units. Therefore,
the purpose of the entire consensus-inspired relaxed SP is to
minimize the system violation while allocating violations pref-
erentially to the power constraints of units with lower operat-
ing costs. The consensus-inspired relaxed SP leads to the con-
struction of bus-level cutting planes, which allow for multiple
reductions of the Boolean polytope, while also maintaining the
decouplability of the MP of UC. Similarly, the consensus strat-
egy in Equations (24–26) utilized in the original relaxed SP also
facilitates multi-cutting and MP decoupling, so the individual
local relaxed SP can be solved in parallel across multiple clas-
sical computers. However, the process of achieving consensus
among the local relaxed SPs of different regions requires mul-
tiple iterations, which is both complex and time-consuming. In
contrast, the improved consensus-inspired relaxed SP not only
eliminates the need for multiple consensus iterations but also
provides the possibility for distributed solving of the MP, due
to its guiding the allocation of slack variables across different
buses to align with the generation cost characteristics of the
units.
Based on the solutions of the continuous variables and dual

variables within the bus, we can construct local feasibility cutting
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planes for the UC at each bus:

0 ≥

NG(n)∑
i=1

NT∑
t=1

k1i,t
(
Pmin
i Ui,t − P̂fea

i,t

)
+ k2i,t

(
P̂fea
i,t − Pmax

i Ui,t

)
,

=
NG(n)∑
i=1

NT∑
t=1

CUC,fea + FUC,fea
i,t ⋅Ui,t , ∀n (36)

here, k1i,t and k2i,t are the dual variables associated with the re-

laxed unit output power capacity constraints (30) and (31). P̂fea
i,t

denotes the solution of the continuous variables obtained by solv-
ing the improved relaxed SP of UC.CUC,fea is the constant term in
the cutting planes, while FUC,fea

e,i,t represents the coefficient of the
unit on/off state variableUi,t in the cutting planes. These cutting
planes are incorporated into the MP of UC in the form of binary
variable constraints, effectively reducing the feasible region of the
binary variables and refining the unit on/off states.
3) Local MP of UC
Since both the consensus-based optimal SP of UC and the im-

proved relaxed SP of UC return local cutting planes on the bus
level, it is possible to construct a bus-level local MP of UC:

min Z = h (37)

s.t. h ≥

NG(n)∑
i=1

NT∑
t=1

CUC,op + FUC,op
i,t ⋅Ui,t ,∀n,∀t (38)

0 ≥

NG(n)∑
i=1

NT∑
t=1

CUC,fea + FUC,fea
i,t ⋅Ui,t ,∀n,∀t (39)

t−1∑
j=t−Ton

i

Ui,j ≥ Ton
i Ui,t−1

(
1 −Ui,t

)
,∀i ∈ NG (n) ,∀t ≥ Ton

i (40)

t−1∑
j=t−Toff

i

(
1 −Ui,j

)
≥ Toff

i Ui,t

(
1 −Ui,t−1

)
.∀i ∈ NG (n) ,∀t ≥ Toff

i (41)

This MP considers the constraints related to binary variables
within each bus, specifically the minimum up/down constraints
for the unit (Equations 40,41). Constraints (38) and (39) are con-
cise representations of the local optimality cutting plane (27) and
the feasibility cutting plane (36), respectively. As the SPs involve
constraints, continuous variables, and deviations that are inde-
pendent across different time periods, the cutting planes (38) and
(39) naturally decouple over time periods. The local MP of UC
focuses on optimizing the binary variables Ui,t, i ∈ NG(n) repre-
senting the on/off state of units within each bus, providing a lo-
cal lower bound Z for the objective function of the original UC
problem. To address this constrained combinatorial optimization
problem, we reformulate the MP into an Ising model (as dis-
cussed in Section 3.4) and employ the quantum annealer (as de-
tailed in Section 3.5) and CIM (as detailed in Section 3.6) to ac-
celerate the solution.
After completing the internal iterations between the local MP

and SPs of UC for all buses, a unit scheduling (Ûi,t, P̂i,t) is ob-
tained. This scheduling is then transmitted to the lower OTS

module. If the unit scheduling does not satisfy the power flow se-
curity constraints of the transmission lines, the lower-level inter-
nal iteration in the lower OTS module generates the correspond-
ing optimal grid topology.

3.2. The Lower OTS Module

In both centralized and distributed frameworks, the lower OTS
module first evaluates whether all security constraints are met
through the optimal SP of OTS. If the security constraints are
satisfied, an optimality cutting plane is constructed and returned
to the MP of OTS. This optimality cutting plane reveals the opti-
mal conditions for the OTS, providing insights into minimizing
the objective function of the original joint optimization problem
and accelerating the convergence of the algorithm. If the security
constraints are not satisfied, the relaxed SP of OTS is solved, fol-
lowed by the construction of a feasibility cutting plane, which is
then returned to the MP of OTS. The goal of this step is to adjust
the transmission switching state to eliminate violations of the se-
curity constraints. The MP of OTS is constrained by the binary
variables constraints, as well as by the optimality and feasibility
cutting planes. It focuses on optimizing these binary variables
Zl,t and providing a lower bound for the objective function of the
original joint optimization problem. If the SPs yield no feasible
solutions, it indicates that no suitable grid topology can be found
for the given unit scheduling Ûi,t. In this case, the lower module
will solve the relaxed SP of the bus and construct a unit security
cutting plane to return to the upper module for correcting the
unit scheduling.
Based on the above description, we will introduce the

consensus-based lower OTS module suitable for distributed sce-
narios. Unlike the consensus-based upper UC module, the SPs
in the lower module will consider consensus variables associated
with neighboring buses under the actual grid topology Ẑl,t.
1) Local optimal SP of OTS
Based on the unit on/off state Ûi,t determined by the upper

module, we need to perform a security check on the current trans-
mission switching schedule Ẑl,t. The optimal SP of OTS takes the
binary variables Ûi,t and Ẑl,t as fixed inputs and is responsible for
optimizing the continuous decision variables pi,t and pl,t in the
joint optimization problem. Its mathematical formulation is as
follows:

min
P

wn =
NT∑
t=1

[ ∑
i∈NG(n)


(
Ûi,t

)
+

(
Pi,t

)
+
∑

l∈NL(n)

(
Zl,t

)]

+
∑

l∈NL(n)

(
P⃗n
l , P⃗

+
l

)
+
∑

m∈Nad(n)


(
𝜃nm, 𝜃

+
m

)
(42)

 = 𝜐nl

(
P⃗n
l − P⃗+

l

)
+

𝜍nl

2

(
P⃗n
l − P⃗+

l

)2
(43)

 = 𝛾nm

(
𝜃nm − 𝜃+m

)
+

𝜑n
m

2

(
𝜃nm − 𝜃+m

)2
(44)

s.t. Zl,t = Ẑl,t, ∀l ∈ NL (n) ,∀t (45)∑
i∈NG(n)

Pi,t ±
∑

l∈NL(n)
P⃗n
l = Dn,t, ∀t (46)
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Pmin
i Ûi,t ≤ Pi,t, ∀i ∈ NG (n) ,∀t (47)

Pi,t ≤ Pmax
i Ûi,t. ∀i ∈ NG (n) ,∀t (48)

−Pmax
l ⋅ Zl,t ≤ P⃗n

l , ∀l ∈ NL (n) ,∀t (49)

P⃗n
l ≤ Pmax

l ⋅ Zl,t, ∀l ∈ NL (n) ,∀t (50)(
𝜃nm − 𝜃nn

)
∕xl − P⃗n

l ≤ M
(
1 − Zl,t

)
,∀l ∈ NL (n) ,∀t (51)

(
𝜃nm − 𝜃nn

)
∕xl − P⃗n

l ≥ −M
(
1 − Zl,t

)
,∀l ∈ NL (n) ,∀t (52)

here, NL(n) denotes the set of transmission lines associated with
bus n; Nad(n) represents the set of neighboring buses connected
to bus n; NG(n) indicates the set of units located at bus n. To
construct a bus-level local optimal SP of OTS, it is necessary to
consider not only the power flow of transmission lines between
the local bus and its neighboring buses but also the relation-
ship between the power flow and the phase angles of the neigh-
boring buses. Therefore, the optimal SP of OTS introduces two
types of consensus variables, P⃗+

l and 𝜃+m are the global consen-
sus variables, representing the power flow of transmission line
l connected to bus n and phase angle of the neighboring bus m,
respectively, while P⃗n

l and 𝜃nm are the local consensus variables,
which are the copies of the power flow and the phase angle of
the neighboring bus in the local optimal SP at bus n, respectively.
The subscripts and superscripts together indicate that these phys-
ical quantities of the transmission line l or busm are local copies
at bus n. The power flow consensus constraint P⃗n

n,m − P⃗+
n,m = 0

and phase angle consensus constraint 𝜃nm − 𝜃+m = 0 are expressed
as soft constraints in the form of consensus deviations,  and
, and are incorporated into the objective function(42). The dual
variables and penalty coefficients associated with the power flow
consensus constraint are denoted as 𝜐nl and 𝜍

n
l , respectively, while

those related to the phase angle consensus constraint are de-
noted as 𝛾nm and 𝜑n

m, respectively. The optimal SPs of OTS con-
sider the power balance constraint (46) for the topology of bus
n, unit output power capacity constraints (47) and (48), trans-
mission line power flow capacity constraints (49) and (50), and
the power flow Equations (51) and (52). The update rules for the
global consensus variables, dual variables of the consensus con-
straints, and penalty coefficients are similar to those described
in Equations (24–26). Once the local consensus variables of each
bus converge, the local optimal SP of OTS approaches the global
optimal solution.
If the SP yields an optimal solution for the continuous vari-

ables, the sensitivity of the system operating cost of bus n to each
transmission line state is calculated. Based on this sensitivity, a
local optimality cutting plane of OTS is constructed:

hn ≥ ŵn +
NT∑
t=1

⎡⎢⎢⎣
∑

l∈NL(n):Ẑl,t=1

𝜂
op
l,t

(
1 − Zl,t

)
+

∑
l∈NL(n):Ẑl,t=0

𝜂
op
l,t Zl,t

⎤⎥⎥⎦,
=

NL(n)∑
l=1

NT∑
t=1

CTS,op + FTS,op
l,t ⋅ Zl,t ,∀n (53)

here, ŵn represents the operating cost of bus n under the given
unit scheduling and the current grid topology (42); The sum of
the operating costs of all buses provides the upper bound for the
objective function of the joint optimization problem, denoted as
UBts =

∑NB
n=1 ŵn; 𝜂

op
l,t denotes the change in operating cost due to a

state change in transmission line l during time period t, which is
defined as the sensitivity of the system operating cost to the trans-
mission line state;CTS,op is the constant term in the cutting plane;
FTS,op
l,t is the coefficient of the transmission line state variable Zl,t
in the cutting plane.
In the traditional Benders decomposition framework, cutting

planes are typically constructed using the dual variables of the
continuous variable constraints in the SP. These dual variables
indicate the influence of the constraints on the objective function.
However, the discrete nature of the transmission line statemakes
it difficult to calculate the dual variables for these SPs. Inspired
by the construction of cutting planes in the Benders framework
and sensitivity analysis methods, we have developed an optimal-
ity cutting plane of OTS that resembles the Benders cutting plane
formulation, based on the sensitivity of the system operating cost
to the transmission line state. To illustrate how to calculate 𝜂opl,t , we
first determine the operating cost ŵn of bus n under the given unit
scheduling and the current grid topology. Then, we temporarily
modify the state of transmission line l one by one under the cur-
rent topology and recalculate the operating cost ŵ′

n of bus n after
the topology change. The resulting change in system operating
cost, ŵ′

n − ŵn, due to the state change of transmission line l, is
defined as the sensitivity 𝜂opl,t = ŵ′

n − ŵn of system operating cost.
If the temporary change in the transmission line state leads to an
infeasible solution or forms an electrical island, the sensitivity of
system operating cost to that transmission line is set to zero.
If the SP has no feasible solution, it indicates that under the de-

termined unit scheduling, the current grid topology fails to pass
the security check. In such a case, slack variables need to be in-
troduced to construct the relaxed SP of OTS.
2) Local relaxed SP of OTS
Based on the local optimal SP of OTS, the unit power capacity

constraints and the transmission line power flow capacity con-
straints are relaxed to formulate a local relaxed SP of OTS, which
potentially yields a feasible solution. Similar to the local optimal
SP of OTS, this relaxed SP uses the binary variables Ûi,t and Ẑl,t
as fixed inputs and introduces two types of consensus variables,
P⃗n
l and 𝜃nm, along with their corresponding soft consensus con-

straints. Under the specified unit and transmission line state, this
SP is responsible for minimizing the local system violation. Its
mathematical formulation is expressed as follows:

min vn =
NT∑
t=1

[ ∑
i∈NG(n)

S−
i,t + S+

i,t +
∑

l∈NL(n)
F−
l,t + F+

l,t

]

+
∑

l∈NL(n)

(
P⃗n
l , P⃗

+
l

)
+
∑

m∈ad(n)


(
𝜃nm, 𝜃

+
m

)
(54)

 = 𝜐nl

(
P⃗n
l − P⃗+

l

)
+

𝜍nl

2

(
P⃗n
l − P⃗+

l

)2
(55)

 = 𝛾nm

(
𝜃nm − 𝜃+m

)
+

𝜑n
m

2

(
𝜃nm − 𝜃+m

)2
(56)
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s.t. Zl,t = Ẑl,t, ∀l ∈ NL (n) ,∀t (57)∑
i∈NG(n)

Pi,t ±
∑

l∈NL(n)
P⃗n
l = Dn,t, ∀t (58)

Pmin
i Ûi,t ≤ Pi,t + S−

i,t, ∀i ∈ NG (n) ,∀t (59)

Pi,t ≤ Pmax
i Ûi,t + S+

i,t, ∀i ∈ NG (n) ,∀t (60)

−Pmax
l ⋅ Zl,t ≤ P⃗n

l + F−
l,t, ∀l ∈ NL (n) ,∀t (61)

P⃗n
l ≤ Pmax

l ⋅ Zl,t + F+
l,t, ∀l ∈ NL (n) ,∀t (62)(

𝜃nm − 𝜃nn

)
∕xl − P⃗n

l ≤ M
(
1 − Zl,t

)
,∀l ∈ NL (n) ,∀t (63)

(
𝜃nm − 𝜃nn

)
∕xl − P⃗n

l ≥ −M
(
1 − Zl,t

)
,∀l ∈ NL (n) ,∀t (64)

0 ≤ S−
i,t, S

+
i,t ,∀i ∈ NG (n) ,∀t (65)

0 ≤ F−
l,t, F

+
l,t ,∀l ∈ NL (n) ,∀t (66)

here the unit capacity slack variables, S−
i,t and S+

i,t, represent the
downward and upward relaxed power of unit i at time period t,
respectively; The transmission line capacity slack variables, F−

l,t
and F+

l,t, represent the downward and upward relaxed power flow
of transmission line l at time period t, respectively; The sum of
all slack variables represents the local system violation vn at bus
n; Equation (58) represents the local power balance constraint
for bus n; Equations (59) and (60) are the relaxed unit power ca-
pacity constraints for bus n, while Equations (61) and (62) are
the relaxed transmission line power flow capacity constraints;
Equations (63) and (64) define the power flow constraints for
bus n; Finally, Equations (65) and (66) limit the range of the
transmission line relaxation variables for bus n. The update rules
for global consensus variables, dual variables of consensus con-
straints, and penalty coefficients are similar to those described in
Equations (24–26).
If the relaxed SP of OTS has a solution, it indicates that a suit-

able grid topology can be constructed for the unit scheduling
through transmission switching. Similar to the approach used
in the local optimal SP of OTS, the sensitivity of system viola-
tion of bus n to each transmission line state can be computed as
𝜂
fea
l,t = v̂′n − v̂n. This sensitivity can then be used to construct the
local feasibility cutting plane of OTS:

0 ≥ v̂n +
NT∑
t=1

⎡⎢⎢⎣
∑

l∈NL(n):Ẑl,t=1

𝜂
fea
l,t

(
1 − Zl,t

)
+

∑
l∈NL(n):Ẑl,t=0

𝜂
fea
l,t Zl,t

⎤⎥⎥⎦,
=

NL(n)∑
l=1

NT∑
t=1

CTS,fea + FTS,fea
i,t ⋅ Zl,t ,∀n (67)

here, 𝜂feal,t represents the sensitivity of system violation to the
transmission line l at time period t. CTS,fea is the constant term
in the cutting plane; FTS,fea

i,t is the coefficient associated with the
transmission line state variables Zl,t in the cutting plane.

If the relaxed SP of OTS still has no solution, it indicates that
there is no feasible grid topology for the unit scheduling provided
by the upperUCmodule. In such cases, it is necessary to return to
theMP of UC in the upper UCmodule to adjust the unit schedul-
ing.
3) Relaxed SP of the bus
The relaxed SP of the bus ensures the feasibility by relaxing

the bus power balance constraints. It does so by fixing all trans-
mission lines to be in a connected state while assigning the unit
on/off state Ûi,t provided by the upper UC module to the vari-
ables Ui,t as equality constraints and calculating the correspond-
ing Lagrange multipliers �̂�i,t. The relaxation SP of bus computes
the minimum power balance overload under the fully connected
state and the upper-level unit dispatch scheme, as expressed be-
low:

min 𝜛 =
NT∑
t=1

NB∑
n=1

R−
n,t + R+

n,t (68)

s.t. Ui,t = Ûi,t, ∀i,∀t (69)∑
i∈NG(n)

Pi,t −
∑

l∈NLfrom(n)
Pl,t+

∑
l∈NLto(n)

Pl,t − R−
n,t + R+

n,t = Dn,t, ∀n (70)

Pmin
i Ui,t ≤ Pi,t ≤ Pmax

i Ui,t, ∀i,∀t (71)

−Pmax
l ≤ P⃗l ≤ Pmax

l , ∀l,∀t (72)(
𝜃m − 𝜃n

)
∕xl − P⃗l = 0, ∀l,∀t (73)

R−
n,t, R

+
n,t ≥ 0, ∀n,∀t (74)

here, 𝜛 represents the minimum system violation of the bus
power balance constraint; The bus power slack variables R−

n,t and
R+
n,t represent the surplus and deficit relaxed power of bus n at

time period t, respectively; Constraint (69) assigns the unit on/off
continuous variables to the unit scheduling for this iteration;
Constraint (70) denotes the bus power balance constraint after in-
corporating the relaxed power; Constraint (71) represent the unit
power capacity constraints, while constraint (72) correspond to
the transmission line capacity constraints in a fully connected
state; Constraint (73) ensures the power flow consistency under
full connectivity; Constraint (74) imposes the non-negativity of
these two types of slack variables, ensuring, together with the ob-
jective function (68), that at any given bus n and time period t, at
least one of the slack variables R−

n,t or R
+
n,t equals zero, that is, that

only one state—either power surplus or deficit—can occur.
Solving the above expression yields the minimum violation of

the power balance constraint �̂� and the Lagrange multiplier �̂�i,t
corresponding to the unit dispatch constraint (69). This allows
us to construct the unit security cutting plane, which is then re-
turned through the external loop and added to the MP of UC in
the upper module to refine the unit scheduling:

0 ≥ �̂� +
NG∑
i=1

NT∑
t=1

�̂�i,t
(
Ui,t − Ûi,t

)
(75)

4) Local MP of OTS
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The local MP of OTS is responsible for determining the binary
state variables Zl,t, l ∈ NL(n) of the transmission lines connected
to bus n. It provides the optimal partial grid topology thatmatches
the upper unit scheduling and gives a local lower bound of the
joint optimization problem’s objective function. This MP can be
expressed as follows:

min hn +
NL(n)∑
l=1

NT∑
t=1


(
Zl,t

)
(76)

s.t.
∑

l∈NL(n)
Zl,t ≥ 1, ∀t (77)

hn ≥
NL(n)∑
l=1

NT∑
t=1

CTS,op + FTS,op
l,t ⋅ Zl,t , (78)

0 ≥

NL(n)∑
l=1

NT∑
t=1

CTS,fea + FTS,fea
i,t ⋅ Zl,t (79)

here the anti-islanding constraints (77) are related to the binary
variables; Constraints (78) and (79) are simplified representations
of the local optimality cutting planes (53) and feasibility cutting
planes (67) of OTS, respectively; The decision variable is Zl,t,
while the local operating cost ŵn, the system violation v̂n, and the
sensitivities of the transmission lines to operating cost 𝜂opl,t and

system violation 𝜂
fea
l,t are hyperparameters input to the MP. Since

in the relaxed SP of OTS, the objective function and constraints
are independent across time periods, the feasibility of cutting
planes generated from this SP can naturally decouple over these
time periods.

3.3. Contingency Validation Module

The contingency validation module is responsible for incorpo-
rating parameters Ũc

i,t, Z̃
c
l,t that represent N-1 contingencies into

the relevant constraints. As depicted in the flowchart in Figure 1,
the process begins with a contingency feasibility check. If no fea-
sible solution is identified during this check, it indicates that it
is impossible to prevent violations of security constraints under
the given contingency bymerely transmission switching. In such
cases, it becomes necessary to construct a unit security cutting
plane for the contingency relaxed SP of the bus and return it to
the upper UC module to adjust the unit scheduling correspond-
ing to the contingency. If a feasible solution does exist, the next
step is to assess whether the system violation under the contin-
gency scenario is zero. If zero violations are detected, it signi-
fies that the current unit scheduling and grid topology remain
valid under the contingency, and the optimal solution is then out-
put. If violations are present, the process proceeds to the contin-
gency relaxed SP of OTS in the lower OTS module, where the
grid topology is recalibrated through the internal iteration of that
module.
The contingency feasibility check takes the optimal UC solu-

tion (Ûi,t, P̂i,t) and corresponding grid topology (Ẑl,t, P̂l,t) under
normal conditions as fixed inputs while accounting for the con-
straints imposed by the unexpected contingency. This process is
mathematically formulated as follows:

min vc =
NT∑
t=1

[∑
i∈NG

S−
i,t + S+

i,t +
∑
l∈NL

F−
l,t + F+

l,t

]
(80)

s.t.
∑

i∈NG(n)
Pi,t ±

∑
l∈NL(n)

P⃗n
l = Dn,t, ∀n,∀t (81)

Pmin
i ⋅ Ûi,t ⋅ Ũ

c
i,t ≤ Pi,t + S−

i,t, ∀i,∀t (82)

Pi,t ≤ Pmax
i ⋅ Ûi,t ⋅ Ũ

c
i,t + S+

i,t, ∀i,∀t (83)

−Pmax
l ⋅ Ẑl,t ⋅ Z̃

c
l,t ≤ Pl,t + F−

l,t, ∀l,∀t (84)

Pl,t ≤ Pmax
l ⋅ Ẑl,t ⋅ Z̃

c
l,t + F+

l,t, ∀l,∀t (85)(
𝜃nm − 𝜃nn

)
∕xl − P⃗n

l ≤ M
(
2 − Ẑl,t − Z̃c

l,t

)
,∀l,∀t (86)

(
𝜃nm − 𝜃nn

)
∕xl − P⃗n

l ≥ M
(
Ẑl,t + Z̃c

l,t − 2
)
,∀l,∀t (87)

0 ≤ S−
i,t, S

+
i,t ,∀i,∀t (88)

0 ≤ F−
l,t, F

+
l,t ,∀l,∀t (89)

Here Equation (81) represents the power balance constraints
for each bus; Equations (82) and (83) define the relaxed unit
power capacity constraints under contingencies; Equations (84)
and (85) describe the relaxed transmission line power flow ca-
pacity constraints during a contingency; Equations (86) and (87)
correspond to the power flow constraints under contingencies;
Finally, Equations (88) and (89) restrict the value ranges for the
slack variables of unit and transmission lines. The contingency
feasibility check computes the relaxed unit power, denoted as S−

i,t,
S+
i,t, and the relaxed transmission line power flow, denoted as F−

l,t,
F+
l,t, under contingencies c. Summing these slack variables pro-
vides the system violation vc under the contingency scenario c.
As illustrated in Figure 1, there are three potential cases of the

contingency feasibility check: (1) If a feasible solution exists and
the objective function (80) representing the system violation vc
under the contingency equals zero, it indicates that the contin-
gency feasibility check has been passed, and the optimal unit
scheduling and grid topology derived under normal conditions
remain applicable to the contingency scenario; (2) If a feasible
solution exists but the system violation is non-zero, the process
moves to the consensus-based local relaxation SP of OTS in the
lower OTS module, where the constraints are adjusted to reflect
the contingency conditions. Specifically, the unit power capacity
constraints (59) and (60) are replaced by (82) and (83), and the
transmission line power flow capacity constraints (61) and (62)
are modified to (84) and (85), and the power flow constraints (63)
and (64) are adjusted to (86) and (87). The lower OTS module’s
internal iteration process is then re-executed to recalibrate the
grid topology under the contingency; (3) If no feasible solution is
found, a unit security cutting plane is constructed, which is then
passed back to the upper UC module to adjust the unit schedul-
ing under the contingency. This iterative process between the
upper and lower modules, involving both internal and external
loops (identical to the procedures under normal conditions but
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with the relevant constraints modified for the contingency sce-
nario), continues until an optimal solution satisfying the contin-
gency feasibility check is obtained. In summary, the contingency
validation module aims to intelligently correct the optimal solu-
tion derived from normal conditions into the optimal response
for post-contingency scenarios.

3.4. Optimization Method of MP Hamiltonian Based on QC

The fundamental unit of a quantum computer is the qubit,
which can exist in a superposition of states |0⟩ and |1⟩. A
quantum system composed of multiple qubits can also be pre-
pared in an entangled state. For instance, a two-qubit system
may exist in a superposition of four entangled states, namely|0⟩|0⟩, |0⟩|1⟩, |1⟩|0⟩, and |1⟩|1⟩. Therefore, a quantum system
consisting of n qubits can potentially be in a superposition of
quantum states. Unlike classical computing, QC leverages the
properties of superposition and entanglement, allowing compu-
tational tasks to be processed in a parallel manner. To harness
these quantum features for accelerating the solution of specific
problems, this section systematically reformulates the cutting
planes in the MP of UC or OTS into a QUBO form of the Hamil-
tonian. Additionally, this section proposes a novel method for
transforming unit minimum up/down constraints into a QUBO
formHamiltonian to serve as a penalty term. This approach alge-
braically handles the unit minimum up/down constraints, avoid-
ing the introduction of auxiliary variables and thereby signifi-
cantly reducing the size of the QUBO matrix for the MP.

3.4.1. Construction Method of Cutting Plane QUBO Hamiltonians

The MPs of UC and OTS consist of different cutting planes. To
construct the QUBO Hamiltonian for the MP, it is necessary to
systematically reformulate each component. Specifically, this in-
volves the optimality cutting plane of UC (38), the feasibility cut-
ting plane of UC (39), and the unit security cutting plane of UC
(75) from the MP of UC, as well as the optimality cutting plane
of OTS (78) and the feasibility cutting plane of OTS (79) from the
MP of OTS, into the QUBO model.
The mathematical model of the QUBO Hamiltonian for the

optimality cutting plane of UC is formulated as follows:

HUC,op
n =

NG(n)∑
i=1

NT∑
t=1

[
NEUC∑
e=1

FUC,op
e,i,t + 𝜉

UC,op
n

(
CUC,op
e −

UBUC
e

)
FUC,op
e,i,t

]
⋅Ui,t

+
NG(n)∑
i=1

NT∑
t=1

NG(n)∑
i′=1

NT∑
t′=1

(
NEUC∑
e=1

FUC,op
e,i,t FUC,op

e,i′ ,t′

)
Ui,tUi′ ,t′ (90)

Here, HUC,op
n denotes the Hamiltonian of the optimality cut-

ting plane of UC for bus n; NEUC represents the internal itera-
tion count of the upper UC module; CUC,op

e is the constant term
of the optimality cutting plane of UC during the e-th iteration;
FUC,op
e,i,t refers to the coefficient of the binary variable Ui,t in the
optimality cutting plane for the e-th iteration; UBUC

e signifies the
upper bound of the objective function in the upper UC module

for the e-th iteration; 𝜉UC,opn is the penalty term coefficient intro-
duced during the conversion of the optimality cutting plane of
CU into the QUBO form.
Themathematicalmodel of theQUBOHamiltonian of the fea-

sibility cutting plane of UC is expressed as follows:

HUC,fea
n = 𝜉

UC,fea
n

NG(n)∑
i=1

NT∑
t=1

×

[
NEUC∑
e=1

(
CUC,fea
e + FUC,fea

e,i,t ⋅Ui,t +
N𝜑UC∑
𝜑=1

2𝜑SUC,fea
𝜑

)]2
(91)

Here,HUC,op
n represents the Hamiltonian of the feasibility cut-

ting plane of UC for bus n; N𝜑UC denotes the number of aux-
iliary binary variables required for the feasibility cutting plane;
SUC,fea𝜑 refers to the auxiliary binary variables introduced for the
feasibility cutting plane of UC; CUC,fea

e is the constant term of the
feasibility cutting plane of UC during the e-th iteration; FUC,fea

e,i,t
represents the coefficient of variable Ui,t in the feasibility cutting
plane during the e-th iteration.
Themathematical model of the QUBOHamiltonian of the op-

timality cutting plane of OTS is expressed as follows:

HTS,op
n =

NL(n)∑
l=1

NT∑
t=1

[
NETS∑
e=1

FTS,op
e,l,t + 𝜉TS,opn

(
CTS,op
e −UBTS

e

)
FTS,op
e,l,t

]
⋅ Zl,t

+
NL(n)∑
l=1

NT∑
t=1

NL(n)∑
l′=1

NT∑
t′=1

(
NETS∑
e=1

FTS,op
e,l,t FTS,op

e,l′ ,t′

)
Zl,tZl′ ,t′ (92)

Here, HTS,op
n denotes the Hamiltonian of the optimality cut-

ting plane of OTS at bus n;NETS represents the internal iteration
count of the lower OTSmodule; CTS,op

e is the constant term of the
optimality cutting plane of OTS during the e-th iteration; FTS,op

e,l,t
refers to the coefficient of binary variable Zl,t in the optimality
cutting plane during the e-th iteration; UBTS

e signifies the upper
bound of the objective function in the lower OTS module for the
e-th iteration; 𝜉TS,opn is the penalty term coefficient introduced dur-
ing the conversion of the optimality cutting plane of OTS into the
QUBO form.
Themathematicalmodel of theQUBOHamiltonian of the fea-

sibility cutting plane of OTS is expressed as follows:

HTS,fea
n = 𝜉

TS,fea
n

NL(n)∑
L=1

NT∑
t=1

×

[
NETS∑
e=1

(
CTS,fea
e + FTS,fea

e,l,t ⋅ Zl,t +
N𝜑TS∑
𝜑=1

2𝜑STS,fea
𝜑

)]2
(93)

here,HUC,op
n represents the Hamiltonian of the feasibility cutting

plane of OTS at bus n; N𝜑TS denotes the number of auxiliary
binary variables required for the feasibility cutting plane; STS,fea𝜑

refers to the auxiliary binary variables introduced for the feasibil-
ity cutting plane of OTS; CTS,fea

e is the constant term of the fea-
sibility cutting plane during the e-th iteration; FTS,fea

e,l,t represents
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the coefficient of the binary variable Zl,t in the feasibility cutting
plane for the e-th iteration; 𝜉TS,fean is the penalty term coefficient
introduced during the conversion of the feasibility cutting plane
of OTS into the QUBO form.
The mathematical model of the QUBO Hamiltonian of the

unit security cutting plane is expressed as follows:

HSE = 𝜉SE
NG∑
i=1

NT∑
t=1

[(
�̂� − 𝜆i,tÛi,t

)
+ 𝜆i,tUi,t +

N𝜑SE∑
𝜑=1

2𝜑SSE
𝜑

]2
(94)

Here, HSE denotes the Hamiltonian of the security cutting
plane ofUC;N𝜑SE represents the number of auxiliary binary vari-
ables required for the security cutting plane; SSE

𝜑
refers to the aux-

iliary binary variables introduced for the security cutting plane;
𝜉SE is the penalty term coefficient introduced during the conver-
sion of the security cutting plane into the QUBO form.

3.4.2. The Improved QUBO Hamiltonian of the Unit Minimum
Up/Down Constraints

The unit minimum up/down constraints (Equations 7 and 8) are
complex binary variable constraints that couple multiple time
periods and are responsible for preventing abrupt changes in
the unit’s operational state. When considering these constraints,
the start-up and shut-down decisions for a unit are influenced
not only by the current period’s demand but also by the state
of preceding and succeeding periods. This temporal dependency
introduces strong inter-period coupling, significantly increasing
the complexity of decision-making. Fundamentally, the mini-
mumup/down constraints are discrete, nonlinear inequality con-
straints. Such constraints complicate model optimization, espe-
cially in large-scale models with many variables, where the de-
mands for computational time and resources increase dramati-
cally.
In the joint optimization problem of UC and OTS over all time

periods T, 2 ∗ T unit minimum up/down constraints are intro-
duced. In traditional penalty construction methods, a set of aux-
iliary binary variables is needed to equivalently transform these
constraints into nonlinear equality constraints. These equality
constraints are then squared to serve as penalty terms, but this
approach introduces a large number of auxiliary variables. Thus,
there is an urgent need for a penalty construction method for
unit minimum up/down constraints that does not rely on auxil-
iary variables.
In constraints (7) and (8), the number of binary variables in-

volved in each term is Ton
i + 2 and Toff

i + 2, respectively. To reduce
this number, the complex unit minimum up/down constraints
are decomposed into simpler constraints for each time period.
The mathematical model is as follows:

Ui,t

(
1 −Ui,t−1

)
≤ Ui,𝜏 , 𝜏 ∈

[
t + 1,min

{
t + Ton

i , NT
}]

(95)

Ui,t−1
(
1 −Ui,t

)
≤ 1 −Ui,𝜏 , 𝜏 ∈

[
t + 1,min

{
t + Toff

i , NT
}]

(96)

Based on the unit minimum up/down constraints, the above
formulation decomposes each original constraint into Ton

i and

Table 1. Truth table of the QUBO Hamiltonian of unit minimum up/down
constraints.

HQT 0 0 2𝜉QT 0 0 2𝜉QT 0 0

Ui,t−1 0 0 0 0 1 1 1 1

Ui,t 0 0 1 1 0 0 1 1

Ui,𝜏 0 1 0 1 0 1 0 1

Toff
i constraints, respectively. This approach increases the num-

ber of minimum up/down constraints while reducing the num-
ber of binary variables in each constraint to three, thereby de-
creasing the complexity of each constraint. Constraint (95) indi-
cates that if unit i starts up at period t, subsequent constraints
are applied to ensure that unit i remains in the “on” state dur-
ing the following t + Ton

i periods. Similarly, constraint (96) en-

forces the minimum downtime requirement by applying t + Toff
i

constraints, ensuring that the unit remains “off” for the specified
minimum number of periods.
After simplifying the unit minimum up/down constraints, we

further couple constraints (95) and (96) into a unified formula-
tion, using −Ui,t +Ui,t−1 to represent the state transition of the
unit. Specifically, if unit i shuts down at period t, then −Ui,t +
Ui,t−1 = 1; if unit i starts up at period t, then−Ui,t +Ui,t−1 = 0; and
if the state of the unit remains unchanged, then −Ui,t +Ui,t−1 =
0. Given that the expected values of Ui,𝜏 are either 0 or 1, we can
construct a penalty term for period 𝜏 such that: when the unit
is shutting down in the current period, make Ui,𝜏 = 0; when the
unit is starting up in the current period, makeUi,𝜏 = 1; and when
the unit’s state does not change, no specific penalty is applied.
This approach leads to the development of a QUBOHamiltonian
that satisfies the unitminimumup/down constraints without the
need for auxiliary variables:

HQT = 𝜉QT
[
Ui,𝜏 +

(
−Ui,t +Ui,t−1

)
− 0.5

]2
(97)

Here, HQT represents the Hamiltonian of the unit minimum
up/down constraints; 𝜉QT denotes the penalty term coefficient in-
troduced during the conversion of the minimum up/down con-
straints into the QUBO form. To simplify the above expression,
we consider the properties of the binary variables Ui,t−1, Ui,t, and
Ui,𝜏 , where (Ui,t−1)

2 = Ui,t−1, (Ui,𝜏 )
2 = Ui,𝜏 and (Ui,t)

2 = Ui,t. By
neglecting the constant terms, we derive the simplified Hamil-
tonian of the unit minimum up/down constraints as follows:

HQT = 2𝜉QT
(
Ui,t −Ui,t−1Ui,t +Ui,t−1Ui,𝜏 −Ui,tUi,𝜏

)
.𝜏

∈
[
t + 1,min

{
t + Ton

i , t + Toff
i , NT

}]
(98)

If unit i performs a start-up or shut-down operation at pe-
riod t, the QUBO Hamiltonian for the unit minimum up/down
constraints is applied to each subsequent period up to t +
Ton
i (T

off
i ). This penalizes states that violate the unit mini-

mum up/down constraints, with the Hamiltonian’s truth val-
ues illustrated in Table 1. For any Ui,t−1, Ui,t and Ui,𝜏 , 𝜏 ∈
[t + 1,min{t + Ton

i , t + Toff
i , NT}], there are a total of eight possi-

ble combinations. If Ui,t−1 and Ui,t differ, it indicates a change in
state at period t. In such cases, a penalty term should be added to
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ensure that the state at subsequent period 𝜏 remains consistent
with the changed state, preserving the minimum up/down con-
straints requirement. In Table 1, the third and sixth states violate
the minimum up/down constraints. After the state changes, the
unit fails to maintain its current state at time 𝜏, resulting in the
HamiltonianHQT being penalized, that is, the system is in an ex-
cited state with higher energy 2𝜉QT . For the other unit state com-
binations that comply with the minimum up/down constraints,
the corresponding Hamiltonian HQT is not penalized, and the
system remains in its ground state.

3.4.3. Optimization Method of Hamiltonian of MP

By summing the Hamiltonian of the cutting planes and the im-
proved Hamiltonian of the unit minimum up/down constraints,
we obtain a QUBO form Hamiltonian that is equivalent to the
MP of UC (Equations 37–41) and OTS (Equations 76–79):

HUC = HUC,op +HUC,fea +HSE +HQT (99)

HTS =
NL(n)∑
l=1

NT∑
t=1


(
Zl,t

)
+HTS,op +HTS,fea (100)

This QUBO form MP Hamiltonian can be easily transformed
into an Isingmodel suitable for quantum computation. The Ising
model can be efficiently mapped onto the hardware of quantum
annealers and CIMs, enabling fast and efficient problem-solving.
The objective of solving this model is to find the ground state of
the Ising Hamiltonian, which corresponds to the optimal state of
the power system with minimal operational cost. Moreover, the
expected value of each qubit 1∕2(I − �̂�

(i)
z ) provides the solution

to the unit on/off states as well as the states of the transmission
lines.
The QUBO formMP of UC andOTS both adhere to a standard

structure:

H =
∑
(i,j)

𝜌i,jXiXj +
∑
i

𝜈i Xi + a (101)

the Ising model can be defined as an undirected graph G(L, K),
where L represents the set of vertices (qubits), and K represents
the set of edges that indicate possible interactions between the
qubits. The Hamiltonian of the Ising model is expressed as:

Hp =
∑
(i,j)

ki,j�̂�
(i)
z �̂�

(j)
z +
∑
i

hi �̂�
(i)
z (102)

where �̂�z = [
1 0
0 −1] is the Pauli-Z operator acting on the i-th qubit,

the first term in the Hamiltonian Hp represents the interaction
between qubits, while the second term accounts for the interac-
tion between the qubits and the external magnetic field.
Based on the mapping relationship between the QUBO vari-

ables and the Pauli-Z operator:

Zi ⇔
1
2
(I − �̂�

(i)
z ) (103)

the QUBO formMPs of UC andOTS can be transformed into the
Ising Hamiltonian Hp. When the spin of the qubit i collapses to|0⟩ (i.e., |i⟩ = |0⟩ = (10)) uponmeasurement, we have ⟨i|�̂�(i)z |i⟩ = 1.

This implies that the expected value of the operator on the right-
hand side of Equation (103) is ⟨i| 1

2
(I − �̂�

(i)
z )|i⟩ = 0, indicating that

the corresponding classical variable takes the value Zi = 0 (i.e.,
representing the unit being “off” or the transmission line be-
ing “disconnected”). Conversely, when the spin of the qubit i col-

lapses to |1⟩ (i.e., |i⟩ = |1⟩ = (01)), the expected value of the opera-

tor on the right-hand side becomes ⟨i| 1
2
(I − �̂�

(i)
z )|i⟩ = 1, indicating

that the classical variable takes the valueZi = 1 (i.e., representing
the unit being “on” or the transmission line being “connected”).

3.5. Model Calculation Based on Quantum Annealing

Quantum annealing algorithms search for the expected value of a
user-defined problem Hamiltonian by adiabatically evolving the
initial Hamiltonian of the system, ensuring that the system re-
mains close to the ground state of the quantum system through-
out the process. At the end of the process, each qubit collapses
from a superposition state to either |0⟩ or |1⟩ uponmeasurement,
yielding the classical solution to the problem represented by the
Hamiltonian.
The process of controlling quantum annealing can be imple-

mented using the D-Wave quantum annealers. The Hamiltonian
of the D-Wave quantum annealers can be expressed as an Ising
model:

HIsing = −
A(s)
2

(∑
i

�̂�
(i)
x

)
+
B(s)
2

(∑
i

hi�̂�
(i)
z +
∑
i>j

ki,j�̂�
(i)
z ⊗ �̂�

(j)
z

)
(104)

where s ∈ [0, 1] is the normalized annealing parameter, �̂�(i)x rep-
resents the Pauli-X operator acting on qubit i, while �̂�(i)z and �̂�

(j)
z

denote the Pauli-Z operators acting on qubits i and j, respectively.
The coefficients hi and ki,j represent the qubit’s bias and coupling
strength, respectively, corresponding to the linear and quadratic
terms in the QUBO form of the MP. The first term in Equa-
tion (104) describes the initial Hamiltonian Hb, while the sec-
ond term describes the problem Hamiltonian Hp, whose lowest
energy eigenstate represents the optimal solution to the QUBO
MP. The Hamiltonian Hp consists of two components: the first
part describes the influence of the external magnetic field on the
spin of each qubit, and the second part represents the interaction
between qubits.
To achieve the adiabatic evolution of the quantum system, one

must first identify the problem Hamiltonian Hp corresponding
to the QUBO form MP and then prepare the initial Hamiltonian
Hb of the quantum system before the annealing process begins.
Given that the quantum system’s Hamiltonian evolves with min-
imal external energy interference, it can transition from the ini-
tial Hamiltonian to the problem Hamiltonian sufficiently slowly.
This evolution process can be mathematically represented as fol-
lows:

H (t) =
(
1 − t

T

)
Hb +

t
T
Hp,

t
T

∈ [0, 1] (105)
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Figure 3. Fundamental principles of the CIM.

where t denotes the time parameter, and T is the total annealing
time.
The solution principles of the quantum annealing algorithm

can be described as follows: (1) Initial State of the Quantum Sys-
tem (t = 0): Before the quantum annealing process begins, at
time t

T
= 0, the quantum system is in a stationary state, specif-

ically in the ground state of the initial Hamiltonian Hb. Dur-
ing this phase, all qubits exist in a superposition of state |0⟩
and |1⟩ (i.e., 1√

2
(|0⟩ + |1⟩)); (2) Quantum Annealing Process Be-

gins (0 < t < T): As the quantum annealing process proceeds, a
slow perturbation is applied to the quantum system. This intro-
duces the coupling and bias terms from the problem Hamilto-
nian into the qubits. As these interactions are gradually imposed,
the qubits begin to entangle with each other. If this perturba-
tion is applied over a sufficiently long period and with a suffi-
ciently slow rate of change (representing an ideal quantum an-
nealing process), the quantum system will consistently remain
in its ground state without transitioning to an excited state; (3)
Final State of the Quantum System (t = T): At the end of the an-
nealing process, that is, t

T
= 1, the quantum system reaches its

final state. Given that no level crossing occurs during the entire
annealing process, the system is now in the ground state of the
problem Hamiltonian. This ground state can then be measured
to yield the solution to the QUBO MP.

3.6. Model Calculation Vased on Optical Quantum CIM

Wang et al. introduced a novel approach for constructing a coher-
ent quantum computer using a network of Degenerate Optical
Parametric Oscillators (DOPOs) to solve NP-hard problems by
finding the ground state of the Ising model in 2013.[53] In 2021,
a coherent quantum computer with 100512 DOPO pulses func-

tioning as Ising spins demonstrated a significant computational
advantage over standard simulated annealing techniques when
solving a 100 000-node graph.[54] This achievement marked the
coherent quantum computer as the only QC platform in the aca-
demic field capable of handling problems at a scale of 100 000
bits, establishing a new benchmark in QC capabilities.
Degenerate Optical Parametric Oscillators (DOPOs) driven by

femtosecond laser pulses are widely utilized in both classical and
quantum optics. This process involves a nonlinear optical phe-
nomenon where, through second-order nonlinear interactions,
the input laser (pump light) is converted into two output beams
(signal and idler waves) of the same frequency. Building on this
DOPO process, Wen et al. within QBoson Quantum Technol-
ogy platform developed a specialized optical quantum computer,
known as the CIM. This quantum computer exhibits notable ad-
vantages in room-temperature optical quantum encoding, con-
trol, and full connectivity.
The fundamental principles of the CIM are illustrated in

Figure 3, depicting a hybrid QC system comprising optical and
electrical subsystems. The optical subsystem is responsible for
the preparation and storage of qubits, while the electrical subsys-
tem manages the control and computation of these qubits. The
entire QC process involves four key modules: the pump pulse
preparation module, the phase sensitive amplification module,
the DOPO module, and the measurement & feedback module.
These components work in tandem to execute the operations nec-
essary for quantum computation. In the pump pulse preparation,
femtosecond fiber lasers generate laser pulses, which are then
modulated and amplified using an intensity modulator (IM) and
an erbium-doped fiber amplifier (EDFA). In the phase sensitive
amplification module, nonlinear optical effects are achieved us-
ing a periodically poled lithium niobate (PPLN1) crystal, generat-
ing a 768 nm second-harmonic laser. This second-harmonic laser
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then serves as the pump laser for conversion into a 1560 nm sig-
nal laser via a second crystal (PPLN2), producing two squeezed
laser states with frequencies that are half that of the pump laser
and with matching polarization directions. These squeezed laser
pulses are then routed into a fiber cavity to form a DOPO, gen-
erating optical pulses with specific phase and amplitude proper-
ties, which serve as the optical qubits. All optical qubits are main-
tained and stored within the fiber cavity for subsequent quantum
computations. As the pump power increases and exceeds the os-
cillation threshold, the system transitions into a coherent state,
where the optical phase bifurcates into two distinct states, 0 and
𝜋, which are analogous to the spin-up and spin-down states, re-
spectively, for solving Ising optimization problems. In the mea-
surement & feedbackmodule, feedback signals are computed us-
ing a field programmable gate array (FPGA) based on the user-
defined Ising problemmatrix. This feedback guides the evolution
of the optical qubits within the fiber cavity towards the lowest en-
ergy state of the Ising Hamiltonian, thereby facilitating the solu-
tion of the Ising optimization problem.
Specifically, the Ising matrix is loaded onto the FPGA, which

then processes the phase and amplitude information of the op-
tical pulses circulating in the fiber loop, obtained through bal-
anced homodyne detection (BHD). Based on this information,
the FPGA computes the feedback signal and modulates the feed-
back optical pulses using a push-pull modulator. These feedback
pulses interact with the optical pulses within the fiber loop, di-
recting the evolution of the optical qubits toward the lowest en-
ergy state of the Hamiltonian of the Ising problem. When the
evolution is complete, the measured phase information of the
optical qubits represents the final solution to the Ising problem.
This mechanism endows the optical quantum computer with a
potential advantage in handling high-dimensional, nonlinear op-
timization problems, showing significant promise in terms of
parallel computing capabilities and processing speed.

4. Numerical Results

4.1. Experimental Preparation

This research presents a scalable distributed solution method
(Distributed QDA) for the joint optimization problem of UC
and OTS based on multi-decomposition and consensus strate-
gies. Depending on the power system scenario, after the multi-
decomposition in the QDA framework, the optimization sub-
problems within eachmodule may not necessarily adopt the con-
sensus strategy and can instead be solved using a globalmodeling
approach (Centralized QDA). In the former case, due to the in-
volvement of cross-regional power flow as a consensus variable,
the optimization problems can be decoupled and solved inde-
pendently at the regional level, making it suitable for large-scale,
cross-regional power systems. The latter is more appropriate for
smaller scale, centralized, unified scheduling scenarios. To ver-
ify the efficiency of the proposed method, we performed multi-
ple scenario analyses using a 6-Bus System and the IEEE RTS
24-Bus System. Given the relatively simple structure of the 6-Bus
System, with fewer continuous and binary variables, it allowed
for a more straightforward analysis of the interactions between
OTS andUC in the scenario experiments. Therefore, we first em-
ployed the CentralizedQDA on the 6-Bus System to verify the cor-

rectness and feasibility of the algorithmic process. Building on
the confirmed validity of the centralized approach, we extended
our experiments to the more extensive and complex IEEE RTS
24-Bus System to demonstrate the superiority of the consensus-
based Distributed QDA. In scenarios 6 and 7, the computational
results and solution times achieved by this distributed approach
showed clear advantages over the commercial solver Gurobi9. In
our QDA, all SPs were solved using the classical solver Gurobi9,
while the QUBO form MPs of UC and OTS were implemented
on the D-Wave LeapTM platform and the optical quantum CIM of
Beijing QBoson Quantum Technology Co., Ltd.
The time required for executing a quantum instruction on a D-

Wave QPU includes the initialization step’s QPU programming
time, aswell as theQPU sampling time, which consists of anneal-
ing time, readout time, and delay time. In contrast to annealing
machines, the optical quantum CIM does not include an initial-
ization step during a single computation process, nor does it re-
quire multiple sampling processes. Instead, it relies on a unified
synchronous evolution, where the optimal solution is read out
when the compressed state of light undergoes spontaneous sym-
metry breaking. Therefore, the QPU time for the optical quan-
tum CIM refers to the duration of a single sampling to output
the current solution.

4.2. 6-Bus System

Figure 4a presents the schematic diagram of the 6-Bus System,
while the load variations of the 6-Bus System over time period
are illustrated in Figure 4b. Table 2 provides detailed transmis-
sion line data for the 6-Bus System, including the direction of
power flow, line reactance, and power flow capacity limits. We
applied the QDA to analyze multiple scenarios of the 6-Bus Sys-
tem, aiming to determine the optimal system operating cost un-
der hourly load conditions, as well as to provide the unit schedul-
ing schemes and transmission line switching strategies. The load
was distributed among buses B3, B4, and B5, with allocations of
20%, 40%, and 40%, respectively, while the three units are located
at buses B1, B2, and B6.
In our experiments with the 6-Bus System, we considered four

distinct scenarios to evaluate the effectiveness of OTS in reducing
system operating costs and to investigate the intelligent switch-
ing strategies in the case of N-1 transmission line contingencies:
Scenario 1: UC without considering transmission constraints

or power flow equations. The UC model in this case includes
only the system’s overall power balance constraint, unit power
capacity constraints, and unit minimum up/down constraints.
The solution to theUC problemunder these conditions yields the
unit state and output power variations over the 24 h, as shown in
Figure 5. In this scenario, unit G1 remains online throughout all
time periods, G2 is operational from time period 8 to 24, while
the costly G3 stays inactive. The total system operating cost for
this scenario amounts to 104725.60.
In Scenario 1, which focuses purely on the UC problem, we

test and discuss two different consensus mechanisms for the re-
laxed SP of UC: the local relaxed SP of UC with average consen-
sus (Equations (28–32) and the consensus-inspired relaxed SP of
UC (Equations 33–35). As shown in Figure 6a, the 6-Bus System
is divided into three regions (denoted by red dashed boxes), with
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Figure 4. a) Schematic diagram, and b) Load variation of the 6-Bus System.

Table 2. Transmission line data of the 6-Bus System.

Line No. From Bus To Bus X[pu.] Flow Limit [MW]

1 1 2 0.170 150

2 1 4 0.258 150

3 2 3 0.037 150

4 2 4 0.197 150

5 3 6 0.018 150

6 4 5 0.037 37

7 5 6 0.140 150

each region containing one bus equipped with one unit, and ad-
jacent regions connected by transmission lines. We first adopt
the average consensus to solve the local relaxed SP of UC in a
distributed manner. Achieving consensus requires multiple iter-
ations of consensus variables related to the neighboring buses.
There are three buses involved, with a total of four consensus
variables (power exchange between neighboring buses) under-
going a convergence process. Figure 6b,c display the consensus
iteration process of power exchange between buses B1 and B2
(P⃗B1

B1,B2, P⃗
B2
B1,B2), and between buses B2 and B6 (P⃗B2

B2,B6, P⃗
B6
B2,B6), re-

spectively. From Figure 6b, it can be seen that for any given time

period t, after several iterations, the consensus variables P⃗B1
B1,B2

and P⃗B2
B1,B2 converge finally. Similarly, in Figure 6c, the consensus

variables P⃗B2
B2,B6 and P⃗B6

B2,B6 also converge. Once each consensus
variable has converged, the relaxed variable distribution for each
bus within the region can be determined.
We then adopt the consensus-inspired strategy by solving the

consensus-inspired relaxed SP of UC, and the optimal relaxed
variable distribution for each region can be obtained in a single,
non-iterative step. Table 3 presents a comparison of the data for
the two consensus mechanisms. The data shows that the average
consensus, due to its reliance on multiple iterations to achieve
convergence, has a significantly higher time-consuming com-
pared to the single-step solution of the consensus-inspired re-
laxed SP of UC. Specifically, the number of iterations for the av-
erage consensus fluctuates between 74 and 186 times in all time
periods, and the average iteration time for each region’s local re-
laxed SP of UC fluctuates between 0.05 and 0.21 s, resulting in an
average total time of 2.36 s. In contrast, the consensus-inspired
relaxed SP of UC in the Distributed QDA has a stable solution
time between 1.00 and 2.74 ms, with a total time of 0.042 s,
which is only 1.78% of the total time of the consensus mecha-
nism, demonstrating a significant speed advantage.
Scenario 2: UC considering transmission line constraints and

power flow equations. Compared to Scenario 1, themodel here is

Figure 5. a) Unit state, and b) Unit output power in Scenario 1.
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Figure 6. a) Consensus regions, b) Iterative convergence process of the consensus variable P⃗B1B1,B2 and P⃗B2B1,B2, c) Iterative convergence process of the

consensus variable P⃗B2B2,B6 and P⃗B6B2,B6 in Scenario 1.

Table 3. Solution data of average consensus mechanism and the Distributed QDA based on consensus-inspired relaxed SP of UC in Scenario 1.

Time Period 1 2 3 4 5 6 7 8 9 10 11 12

Consensus Iterations 179 182 184 186 186 184 179 172 91 78 75 74

Average ConsensusTime-consuming (s) 0.14 0.14 0.13 0.13 0.21 0.13 0.13 0.21 0.06 0.10 0.05 0.06

Distributed QDA’s Consuming (ms) 1.36 1.04 2.70 1.01 2.09 1.00 2.02 1.00 2.53 2.01 2.15 1.00

Time Period 13 14 15 16 17 18 19 20 21 22 23 24

Consensus Iterations 75 74 74 76 77 77 80 81 81 80 91 174

Average ConsensusTime-consuming (s) 0.08 0.05 0.05 0.05 0.07 0.06 0.06 0.13 0.06 0.06 0.07 0.13

Distributed QDA’s Consuming (ms) 1.16 1.00 1.51 0.10 2.74 2.45 2.19 1.67 3.32 1.91 1.99 1.99

extended by adding a fixed transmission network topology with
full connection, accounting for transmission line power flow ca-
pacity constraints and power flow equations. Additionally, Sce-
nario 2 is divided into two sub-scenarios: Scenario 2-1 uses the
default upper limits for transmission line power capacities; Sce-
nario 2-2 reduces the upper limits for transmission line power
capacities.
Figure 7 illustrates the unit on/off state, power output, and

transmission power flow across time periods for both Scenario
2-1 and Scenario 2-2. In Scenario 2-1, the unit scheduling is ad-
justed compared to Scenario 1 due to the inclusion of power flow
constraints and transmission line capacity constraints. G1 re-
mains online throughout the entire time period, while the costly
G3 remains offline. However, G2 is shut down during periods 2–
6 and operates in the remaining periods. The unit output power

is also adjusted accordingly to meet the power flow constraints.
Compared to Scenario 1, G1’s output power is reduced during pe-
riods of power flow congestion (time periods 1 and 7–24), leading
to an increase in the output power of the relatively more expen-
sive G2 to satisfy the system load at each bus. Consequently, this
results in a higher system operating cost of 110103.45. To further
emphasize the impact of power flow constraints on unit schedul-
ing, in Scenario 2-2, we reduce the transmission line power lim-
its, setting the maximum power capacities of lines L1, L2, L3, L4,
L5, and L7 from the original 150 MW to 100 MW. The reduced
maximum power limits lead to a more pronounced congestion
issue on the transmission lines. As a result, to satisfy the load
demand at each bus, the costly G3 is required to participate in
power generation during time periods 9–22, further increasing
the total system operating cost to 111735.23.

Adv. Quantum Technol. 2025, e2500241 © 2025 Wiley-VCH GmbHe2500241 (18 of 27)

 25119044, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/qute.202500241 by G

uangxi U
niversity, W

iley O
nline L

ibrary on [30/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 7. a)/d) Unit state, b)/e) Unit output power, and c)/f) Transmission power flow in Scenario 2-1/ Scenario 2-2.

Scenario 3: The joint optimization model for UC and OTS.
This scenario builds on the UC model from Scenario 2 by in-
troducing binary variables to represent the state of transmission
lines. In the joint optimization model, both unit scheduling and
transmission switching are optimized simultaneously to min-
imize system operating costs. Similar to Scenario 2, two sub-
scenarios are considered: Scenario 3-1, with default transmission
line power flow limits, and Scenario 3-2, with reduced transmis-
sion line power flow limits.
The Centralized QDA is used to solve the joint optimization

problem for both sub-scenarios. The unit state, power output,
transmission line state, and power flow results are presented in
Figure 8. In comparison to Scenario 2-1, Scenario 3-1 achieves
a significant reduction in system operating costs by optimiz-
ing transmission switching, reducing the total cost to 104725.60,
which is the same as that from Scenario 1 and represents a 4.88%
decrease compared to Scenario 2-1. The final unit scheduling
also aligns with that of Scenario 1. Transmission line L4 is dis-
connected during time periods 11–16, and L6 is disconnected
during time periods 1, 7–10, and 17–24. Similarly, in Scenario
3-2, the maximum power flow limits of L1, L2, L3, L4, L5, and
L7 are reduced to 100 MW. The total system operating cost is
111409.07, reflecting a 6.38% increase compared to Scenario 3-

1. However, compared to Scenario 2-2, which also reduced the
transmission line power limits, the system cost in Scenario 3-2
is reduced by 0.29%. This demonstrates that incorporating trans-
mission switching into the UCmodel effectively alleviates power
flow congestion while reducing overall system operating costs.
Scenario 4: The joint optimization model for UC and OTS un-

der N-1 contingency conditions. This scenario extends the joint
optimization model from Scenario 3 by considering N-1 contin-
gency conditions, specifically addressing the situation where un-
expected line failures occur. The goal is to adapt to such contin-
gencies through emergency adjustments in both unit scheduling
and transmission line switching, thereby ensuring that bus loads
are met without significant curtailments.
Figure 9a illustrates the scenario in which L1 of the 6-Bus Sys-

tem experiences a failure, taking it offline. In this diagram, the
blue solid line indicates the offline state of L1, while the red solid
lines highlight transmission lines with power flow violations.
Under these conditions, the UC model from Scenario 2 would
lead to severe power flow violations, potentially causing short-
term or long-term instability in the power system, and in extreme
cases, a complete system collapse. As shown in Figure 9b, the
power flow constraint violations in Scenario 2 become apparent
when L1 fails. The red solid lines represent the power flow limits
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Figure 8. a)/e) Unit state, b)/f) Unit output power, c)/g) Transmission lines state, and d)/h) Transmission power flow in Scenario 3-1/Scenario 3-2.

of L1, L2, L3, L4, L5, and L7, while the red dashed line indicates
the power flow limit of L6. In this scenario, L2 experiences power
flow violations during time periods 1–3 and 6–24, and L6 exceeds
its power flow limit for the entire 24-hour period.
To address this issue, we employ the Centralized QDA to solve

the joint optimization model under N-1 contingency conditions.
The results are presented in Figure 10, which demonstrates that
the joint optimization of UC and OTS successfully adapts to the
offline condition of transmission line L1, thereby ensuring bus
loads aremet while avoiding power flow violations. To specifically
mitigate the violations on L2 and L6, the solution involves discon-
necting L4 during time periods 11–16 and L6 during time periods
1–10 and 17–24. Correspondingly, G1 remains online through-

out the entire 24-hour period, while G2 is scheduled to be on-
line during time periods 1–3 and 6–24. The total system operat-
ing cost under these conditions is 108473.20, which represents a
3.58% increase compared to Scenario 3-1, where no contingency
occurred for L1.

4.3. IEEE RTS 24-Bus System

To evaluate the performance of the consensus-based Distributed
QDA in solving the joint optimization model for UC and OTS in
larger-scale systems, we conducted computational analysis on the
IEEE RTS 24-Bus System. Figure 11a presents the schematic di-
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Figure 9. a) The 6-Bus System under a contingency on transmission line L1, and b) Flow limits exceeded under contingency.

Figure 10. a) Unit state, b) Unit output power, c) Transmission lines state, and d) Transmission power flow in Scenario 4.

agram of the IEEE RTS 24-Bus System, while the load variations
of the IEEE RTS 24-Bus System over time periods are illustrated
in Figure 11b. This model consists of 24 buses, 34 transmission
lines, and 26 units, which are distributed across buses B1, B2, B7,
B13, B15, B16, B18, B21, and B23. The detailed bus load distri-
bution and the parameters for unit and transmission lines are
consistent with the specifications provided in Ref. [55]. Using
the Distributed QDA, we analyzed three different scenarios for
the IEEE RTS 24-Bus System. In each scenario, we provided the
hourly unit scheduling and transmission switching strategies, as
well as the corresponding system operating costs, while ensuring
that the bus load requirements were met. This analysis aims to
demonstrate the algorithm’s capability to handle complex power
system operations in a larger-scale system efficiently.
Scenario 5: The joint optimization of UC and OTS. In this

scenario, we focused on the joint optimization problem under
the same constraints as those applied in Scenario 3. The fi-

nal resulting transmission line state is a full connection. Figure
12 shows the bus output power (the total output power from
all units connected to the bus) at different time periods, repre-
senting the bus’s contribution to system generation across vari-
ous time periods. The total system operating cost achieved was
738159.68, matching the result obtained using the commercial
solver Gurobi9.
Scenario 6: The joint optimization with reduced transmission

line power flow limits. To further examine the impact of trans-
mission switching on reducing operational costs in the IEEE RTS
24-Bus System, we extended the analysis from Scenario 5 by low-
ering the power flow limits of transmission lines (L1-L34) by 80
MW from their original values. While this reduction led to an
infeasible solution under the fully connected line configuration,
the joint optimization model of UC and OTS identified a fea-
sible solution. Figure 13 presents the results of the Distributed
QDA for this scenario: L1 and L6 were disconnected during time
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Figure 11. a) Schematic diagram, and b) Load variation of the IEEE RTS 24-Bus System.

Figure 12. Bus output power in Scenario 5.

periods 3 and 5–6, L7 was disconnected during time periods 2
and 8, L16 was disconnected during time period 18, and L23 was
disconnected during time period 19, while the remaining lines
stayed connected throughout all time periods. The resulting sys-
tem operating cost was 740095.81, representing a 0.003% reduc-
tion compared to Gurobi9’s calculation of 740118.16.
Scenario 7: The Joint optimization under N-1 transmission

line contingency. To further analyze the impact of an N-1 trans-
mission line contingency on the IEEE RTS 24-Bus System, Sce-
nario 7 builds upon the setup of Scenario 6 by assuming that
transmission line L10 is offline due to a failure. In this scenario,
the traditional UC model with fixed transmission topology (sim-
ilar to Scenario 2) remained infeasible. However, the joint op-
timization model of UC and OTS identified a feasible solution.
The results, obtained using the Distributed QDA, are illustrated
in Figure 14: L4 was disconnected during time period 18, and L6,
L22, and L29 were all disconnected during time period 19, while
the remaining lines stayed connected throughout all time peri-
ods. The total system operating cost was reduced to 759120.52,
representing a 0.34% decrease compared to Gurobi9’s solution
of 761688.25.

4.4. Summary of Model Examples

Tables 4 and 5 present detailed computational results for the 6-
Bus System and IEEE RTS 24-Bus Systemmodels across Scenar-
ios 1 to 7. The tables include results such as the objective function
values, outer iteration counts between the upper UCmodule and
lower OTSmodule, the number of inner interactions in these two
modules, the total computation time required, and the utilization
times of both the Quantum Processing Unit (QPU) and the Clas-
sical Processing Unit (CPU). For the 6-Bus System, given its rela-
tively small scale and simple structure, there was no need to apply
the Distributed QDA. Instead, the Centralized QDA was suffi-
cient to validate the workflow’s effectiveness. In contrast, for the
larger and more complex IEEE RTS 24-Bus System, the central-
ized method struggled to converge to a feasible solution within
a reasonable timeframe. Consequently, the consensus-based Dis-
tributed QDAwas employed to demonstrate its computational ef-
ficiency. The convergence criteria of the upper and lower bounds
of Gurobi9 and QDA are both set to error tolerance 10−4. The
OTS is only involved starting from Scenario 3 and beyond, so
the CIM is employed to solve the MP Hamiltonian beginning
with Scenario 3. During the iterative process, the number of cut-
ting planes in the MP increases linearly with the number of it-
erations, theoretically leading to a progressively increasing op-
timization complexity and, consequently, slower solution speed.
Due to the high cost of using CIMs to solve QUBO problems, for
optimization tasks involving the CIM, we only solve the QUBO
form MP in the final iteration, considering its solution time as
an upper bound for the time required to solve the MP in each
iteration. This approach allows us to estimate the upper limits of
the Quantum Processing Unit (QPU) usage time and the total
computation time. This strategy is both cost-effective and suffi-
cient to validate the algorithm’s efficacy while also highlighting
the quantum advantage of the CIM. In the results of the 6-Bus
System shown in Table 4, the objective function values obtained
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Figure 13. a) Transmission line state, and b) Bus output power in Scenario 6.

Figure 14. a) Transmission line state, and b) Bus output power in Scenario 7.

using the Centralized QDA are identical to those from Gurobi9
(with a superior result in Scenario 4). However, both the D-Wave
and CIM versions of the QDA require more computation time
to converge compared to Gurobi9. On the other hand, the re-
sults for the IEEE RTS 24-Bus System in Table 5 show that the
consensus-based Distributed QDA consistently achieves objec-
tive function values that are equal to or better than those from
Gurobi9 (with superior results in Scenarios 6 and 7). Moreover,
the convergence times for all scenarios are significantly shorter
than those of Gurobi9, with the CIM implementation of the Dis-
tributed QDA outperforming the D-Wave version in terms of so-
lution speed. These findings further underscore the potential of
QC, particularly the QC based on the photonic quantum com-
puter, in the field of optimization. The results also demonstrate
the effectiveness and superiority of the Distributed QDA.

5. Conclusion

To address the joint optimization of UC and OTS with consider-
ation of day-ahead contingency constraints, this study proposes
both Centralized and consensus-based Distributed QDAs, lever-
aging the advantages of QC for solving QUBO problems. The
consensus distributed version employs a multi-stage optimiza-
tion strategy to construct cutting planes in parallel at the bus
level, providing a day-ahead scheduling solution for units along
with the corresponding optimal grid topology. This approach
achieves a coordinated optimization of both the grid topology and
unit output power, offering a flexible and reliable solution for
enhancing the economic efficiency and security of power gen-

eration. In the consensus-based Distributed QDA, the upper UC
module introduces the interactive power of neighboring buses as
consensus variables, while the lower OTS module incorporates
the real interactive power flows and phase angles of neighboring
buses as consensus variables. This consensus-based construction
of local relaxed SPs and consensus-inspired relaxed SP enables
both the upper and lower modules to perform parallel compu-
tation and optimization, and consensus-inspired relaxed SP not
only effectively allocates the relaxation variables and decouples
the cutting planes, but also reduces the computation time to just
1.78% of the time required by the average consensus mecha-
nism. The cutting planes that constitute the MP are sequentially
transformed into the QUBO formHamiltonian, enabling the dis-
crete variable optimization of the MP to leverage the quantum
annealer or CIM based on optical systems for accelerated com-
putation. This significantly enhances the optimization speed of
the algorithm. Additionally, we introduce a novel method for con-
structing the QUBO Hamiltonian for unit minimum up/down
constraints. Unlike traditional discrete methods, this approach
eliminates the need for auxiliary binary variables, substantially
reducing the size of the QUBO matrix for the MP and thereby
minimizing the quantum resource requirements. Finally, our de-
velopedmethod effectively mitigates and avoids power flow viola-
tions by optimizing the grid topology through transmission line
switching, resulting in a reduction in operational costs. Compar-
ative experiments using the 6-Bus System acrossmultiple scenar-
ios against Gurobi9 demonstrate the effectiveness of the Central-
ized QDA in solving the joint optimization problem of UC and
OTS. Furthermore, tests on the IEEERTS 24-Bus System indicate
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Table 4. Results for the Centralized QDA in various scenarios for 6-Bus System.

System Scenarios Data Gurobi9 Centralized QDA
(Gurobi + D-Wave)

Centralized QDA
(Gurobi + CIM)

6-Bus System Scenario 1 Objective function value 102547.60 102547.60 –

Number of iterations within upper UC module – 3 –

Number of iterations within lower OTS module – – –

Number of iterations between upper and lower
modules

– – –

Solution time (s) 0.0450 0.3270 –

Solution time of QPU (s) – 0.3180 –

Solution time of CPU (s) 0.0450 0.0090 –

Scenario 2-1 Objective function value 110103.45 110103.45 –

Number of iterations within upper UC module – 4 –

Number of iterations within lower OTS module – 48 –

Number of iterations between upper and lower
modules

– 2 –

Solution time (s) 0.0708 0.3850 –

Solution time of QPU (s) – 0.3810 –

Solution time of CPU (s) 0.0708 0.0040 –

Scenario 2-2 Objective function value 111735.23 111735.23 –

Number of iterations within upper UC module – 4 –

Number of iterations within lower OTS module – 48 –

Number of iterations between upper and lower
modules

– 2 –

Solution time (s) 0.0718 0.5049 –

Solution time of QPU (s) – 0.4770 –

Solution time of CPU (s) 0.0718 0.0279 –

Scenario 3-1 Objective function value 102547.60 102547.60 102547.60

Number of iterations within upper UC module – 3 3

Number of iterations within lower OTS module – 53 53

Number of iterations between upper and lower
modules

– 1 1

Solution time (s) 0.1725 0.7886 < 0.5767

Solution time of QPU (s) – 0.2570 < 0.0593

Solution time of CPU (s) 0.1725 0.5316 0.5316

Scenario 3-2 Objective function value 111409.07 111409.07 111409.07

Number of iterations within upper UC module – 4 4

Number of iterations within lower OTS module – 55 55

Number of iterations between upper and lower
modules

– 2 2

Solution time (s) 0.36901 1.0684 < 0.6117

Solution time of QPU (s) – 0.4770 < 0.0203

Solution time of CPU (s) 0.36901 0.5914 0.5914

Scenario 4 Objective function value 108504.36 108473.20 108473.20

Number of iterations within upper UC module – 4 4

Number of iterations within lower OTS module – 94 94

Number of iterations between upper and lower
modules

– 2 2

Solution time (s) 0.0908 1.4003 < 0.9983

Solution time of QPU (s) – 0.4450 < 0.0430

Solution time of CPU (s) 0.0908 0.9553 0.9553
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Table 5. Results for the consensus-based Distributed QDA in various scenarios for IEEE RTS 24-Bus System.

System Scenarios Data Gurobi9 Distributed QDA
(Gurobi + D-Wave)

Distributed QDA
(Gurobi + CIM)

IEEE RTS 24-Bus
System

Scenario 5 Objective function value 738159.68 738159.68 738159.68

Number of iterations within upper UC module – 5 5

Number of iterations within lower OTS module – 24 24

Number of iterations between upper and lower
modules

– 1 1

Solution time (s) 10.3473 8.2175 < 0.9060

Solution time of QPU (s) – 7.3383 < 0.0268

Solution time of CPU (s) 10.3473 0.8792 0.8792

Scenario 6 Objective function value 740118.16 740095.81 740095.81

Number of iterations within upper UC module – 6 6

Number of iterations within lower OTS module – 102 102

Number of iterations between upper and lower
modules

– 2 2

Solution time (s) 48.5053 22.6671 < 3.5188

Solution time of QPU (s) – 19.3862 < 0.2379

Solution time of CPU (s) 48.5053 3.2809 3.2809

Scenario 7 Objective function value 761688.25 759120.52 759120.52

Number of iterations within upper UC module – 6 6

Number of iterations within lower OTS module – 50 50

Number of iterations between upper and lower
modules

– 2 2

Solution time (s) 58.2102 11.3709 < 2.2148

Solution time of QPU (s) – 9.3026 < 0.1465

Solution time of CPU (s) 58.2102 2.0683 2.0683

that the results and computation time of the QDA are superior to
those of the classical commercial solver Gurobi9, validating the
advantages of the consensus Distributed QDA in tackling large-
scale joint optimization problems of UC and OTS.

Appendix A

In addressing the UC problem, the Benders decomposition algo-
rithm introduces non-negative slack variables into the unit capac-
ity constraints, thereby formulating original relaxed SP of UC:

min 𝜂 =
NG∑
i=1

NT∑
t=1

S1i,t + S2i,t (A1)

s.t.
NG∑
i=1

Pi,t = Dt, → k0t ∀t (A2)

Pmin
i Ûi,t ≤ Pi,t + S1i,t,→ k1i,t ∀i,∀t (A3)

Pi,t − S2i,t ≤ Pmax
i Ûi,t,→ k2i,t ∀i,∀t (A4)

S1i,t, S
2
i,t ≥ 0. → k3i,t, k

4
i,t ∀i,∀t (A5)

The objective function (A1) aims to minimize the sum of all
slack variables, representing the deviation from the unit capac-
ity constraints. Equation (A2) ensures the overall power balance
constraint for the system. Equations (A3) and (A4) denote the re-

laxed unit capacity constraints, while Equation (A5) imposes the
non-negativity condition on the slack variables. Solving this orig-
inal relaxed SP of UC allows for the calculation of the minimum
total deviation from the unit capacity constraints for all units in
the system. Since there may exist multiple optimal solutions cor-
responding to the same optimal deviation value, our goal is to
develop a consensus-inspired relaxed SP of UC, distributing the
slack variables in a manner that aligns with the economic char-
acteristics of units. This facilitates the construction of feasible
cutting planes for local UC at each bus based on the solutions of
the continuous and dual variables within the bus.
The above formulation constitutes a linear programming prob-

lem, exhibiting convex optimization properties. Consequently,
the optimality of the solution can be represented using the
Karush-Kuhn-Tucker (KKT) conditions, ensuring the attainment
of the optimal deviation 𝜂. The Lagrangian function for this for-
mulation is expressed as follows:


(
Pi,t, S

1
i,t, S

2
i,t, k

0
t , k

1
i,t, k

2
i,t, k

3
i,t, k

4
i,t

)
=

NG∑
i=1

NT∑
t=1

S1i,t + S2i,t+k
0
t

(
NG∑
i=1

Pi,t − Dt

)

+k1i,t
(
Pmin
i Ûi,t − Pi,t − S1i,t

)
− k3i,t

(
S1i,t
)

+k2i,t
(
Pi,t − S2i,t − Pmax

i Ûi,t

)
− k4i,t

(
S2i,t
)

(A6)
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The KKT conditions can be derived from the Lagrangian func-
tion of the following optimization problem:

𝜕
(
Pi,t, S

1
i,t, S

2
i,t, k

0
t , k

1
i,t, k

2
i,t, k

3
i,t, k

4
i,t

)
𝜕Pi,t

= 0, ∀i,∀t (A7)

𝜕
(
Pi,t, S

1
i,t, S

2
i,t, k

0
t , k

1
i,t, k

2
i,t, k

3
i,t, k

4
i,t

)
𝜕S1i,t

= 0, ∀i,∀t (A8)

𝜕
(
Pi,t, S

1
i,t, S

2
i,t, k

0
t , k

1
i,t, k

2
i,t, k

3
i,t, k

4
i,t

)
𝜕S2i,t

= 0, ∀i,∀t (A9)

k0t

(
NG∑
i=1

Pi,t −Dt

)
= 0, ∀t (A10)

k1i,t
(
Pmin
i Ûi,t − Pi,t − S1i,t

)
= 0, ∀i,∀t (A11)

k2i,t
(
Pi,t − S2i,t − Pmax

i Ûi,t

)
= 0, ∀i,∀t (A12)

k3i,t
(
S1i,t
)
= 0, ∀i,∀t (A13)

k4i,t
(
S2i,t
)
= 0, ∀i,∀t (A14)

Pmin
i Ûi,t − Pi,t − S1i,t ≤ 0, ∀i,∀t (A15)

Pi,t − S2i,t − Pmax
i Ûi,t ≤ 0, ∀i,∀t (A16)

S1i,t, S
2
i,t, k

1
i,t, k

2
i,t, k

3
i,t, k

4
i,t ≥ 0 (A17)

These conditions represent the KKT conditions of the original
relaxed SP of UC within the Benders decomposition algorithm,
ensuring the optimality of the given optimization problem.
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