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Quantum computing is an emerging technology that is expected to realize an exponential increase in computing power. Recently,
its theoretical foundation and application scenarios have been extensively researched and explored. In this work, we propose ef-
ficient quantum algorithms suitable for solving computing power scheduling problems in the cloud-rendering domain, which can
be viewed mathematically as a generalized form of a typical NP-complete problem, i.e., a multiway number partitioning problem.
In our algorithm, the matching pattern between tasks and computing resources with the shortest completion time or optimal load
balancing is encoded into the ground state of the Hamiltonian; it is then solved using the optical coherent Ising machine, a prac-
tical quantum computing device with at least 100 qubits. The experimental results show that the proposed quantum scheme can
achieve significant acceleration and save 97% of the time required to solve combinatorial optimization problems compared with
classical algorithms. This demonstrates the computational advantages of optical quantum devices in solving combinatorial opti-
mization problems. Our algorithmic and experimental work will advance the utilization of quantum computers to solve specific
NP problems and will broaden the range of possible applications.
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1 Introduction

The advancement of quantum technology is of great scien-
tific significance and social value, which is expected to have
a considerable impact on traditional technology and trigger a
technological revolution and industrial transformation [1-4].
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As the cutting edge of quantum technology, quantum com-
puting is dedicated to using the principles of quantum me-
chanics to calculate and simulate complex systems [5-7].
Due to its potential advantages in processing large amounts
of data quickly and efficiently, quantum computers are ex-
pected to play an important role in secure encryption [8, 9],
database search [10,11], machine learning [12,13], and many
other scenarios that are intractable with classical computers
[14-20].
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People can quickly optimize the scheduling processes of
personnel and equipment to maximize efficiency and min-
imize costs in scenarios such as communication networks
[21, 22], healthcare [23], transportation [24-26], and com-
plex supply chain management [27-32] by harnessing the
power of quantum computers. Furthermore, quantum com-
puting has the potential to revolutionize the field of comput-
ing power scheduling in cloud computing [33-35], which re-
quires searching a large solution space for the optimal config-
urations for allocating computing resources to various tasks
with improved performance and efficiency.

This paper focuses on a particular application scenario re-
garding the computing power scheduling problem in a cloud-
rendering domain, which can be mathematically modeled as
a generalized form of the multiway number partitioning prob-
lem, a critical NP-complete problem [36-44]. Herein, two
quantum algorithms from different optimization viewpoints
are proposed, and an experimental solution on the optical co-
herent Ising machine (CIM) is presented [45-53], which is
an over 100-qubit quantum computing device. The exper-
imental results show that our quantum scheme can realize
a significant quantum acceleration, saving 97% of solving
time on average compared with classical simulated anneal-
ing (SA) and tabu search algorithms [54]. Being the first
experimental demonstration of a quantum algorithm for the
generalized multiway number partitioning problem in opti-
cal systems, our paper presents the acceleration of quantum
computers relative to classical techniques for a specific NP-
complete problem and discusses a new application scenario
for quantum computing.

This paper is organized as follows: we begin with some
preliminary material in sect. 2, followed by a description of
the proposed quantum algorithms in sect. 3, which transform
the scheduling of computing power resources into an opti-
mization problem. Sect. 4 presents an experimental demon-
stration of the quantum algorithm on a practical optical quan-
tum computer, as well as comparisons with classical algo-
rithms. Finally, we conclude in sect. 5.

2 Preliminaries

2.1 Background and mathematical reduction

The task of computing power scheduling for image render-
ing is a crucial process in cloud computing [55], as shown
in Figure 1. In general, such a scenario is as follows: the
client submits a rendering task with specific requirements,
and the service providers must find the optimal schemes to
invoke computing resources. The basic idea is to find the
fewest number of servers possible while keeping constraints

in mind. This is accomplished by first presenting a machine
number and then applying various heuristic algorithms to de-
termine the current state (completion time, load balancing,
and so on) for comparing satisfaction. However, due to a
growing volume of data, the optimal task-server scheduling
scheme cannot be effectively obtained in large-scale dynamic
cloud rendering, and redundant rendering is a common phe-
nomenon. This would result in a mismatch between server
and rendering tasks, wasting computing resources and reduc-
ing rendering efficiency.

Mathematically, this procedure can be modeled as a gener-
alized multiway number partitioning problem [42-44], which
is an example of an NP-complete problem [37]. The
multiway number partitioning problem is defined as divid-
ing/partitioning a given set S = {· · · , ai, · · · } of positive in-
tegers into k subsets to make the sum of subsets as equal as
possible. For the widely studied k = 2 case, the number parti-
tioning problem (NPP) can be characterized as an optimiza-
tion problem to mitigate the difference D(2) =

∣∣∣ ∑ai∈A ai −∑
ai∈S \A ai

∣∣∣ between subset A and complementary set S \A
[40,41]. Generally, if we set the arbitrary k subsets as Ak ⊂ S
satisfying ∪kAk = S and Ak ∩ Ak′ = ∅ for k , k′, the opti-
mization function to be minimized can be reformulated as:

D(k) =
∑
k,k′

∣∣∣ ∑
ai∈Ak

ai −
∑

ai∈Ak′

ai

∣∣∣. (1)

Here, we extend the balanced bipartition (k = 2) to multipar-
titioned cases (k ≥ 2) without restricting the elements to in-
tegers. Furthermore, the target sum of each subset can be set
differently, resulting in the partitioning of the set S into sev-
eral subsets with unequal sums. Using these extensions, we
can establish a correspondence between such a generalized
multiway NPP and computing power scheduling problem in
the cloud-rendering domain, as detailed in sect. 3.

wN
wj
w3

w2

w1

Input xij

Optimal scheme

Output

s1 s2

sj sM

min f1(xij) or min f2(xij)

Computing resource poolRendering tasks

Figure 1 (Color online) Schematic of the cloud-rendering computing power
scheduling process. There are N tasks in the queue to be assigned to M ma-
chines, and each machine processes one task at a time. The expected dura-
tion of task i ∈ {1, 2, · · · ,N} is wi and the beginning of available time for
machine j ∈ {1, 2, · · · ,M} is s j. The scheduling scheme is encoded in a se-
ries of binary variables (xi j), and the best objective schemes can be found
by minimizing the proposed optimization functions f1(xi j) in eq. (8) with
minimum completion time or f2(xi j) in eq. (10) with best load balancing.
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2.2 QUBO and Ising model

The quadratic unbounded binary optimization (QUBO) prob-
lem and its relationship with the Ising model are introduced
briefly here. Many canonical NP-hard and NP-complete
problems have been shown to be transformable into a com-
binatorial optimization form [56]. A large class of these op-
timization problems can be expressed in QUBO form with
binary variables of {0, 1} basis or in {−1, 1} basis with spin
variables of the Ising model, and these two forms with differ-
ent bases are interchangeable [57]. Specifically, the math-
ematical form of the QUBO problem is demonstrated as
follows:

fQUBO(x) =
∑
i≤ j

qi jxix j = xTQx, (2)

where x = {xi} is the binary variable vector to be solved, and
the QUBO matrix Q = {qi j} indicates the quadratic coeffi-
cients. The objective solution is

x∗ = arg min
x

fQUBO(x). (3)

By transforming variables as xi → (I +σi)/2 where the σi

is a spin variable, the optimization functions can be demon-
strated with an Ising model. The target solution is then en-
coded in the ground states of the Hamiltonian:

HIsing(σ) = −
∑
i, j

Ji jσiσ j −
∑

i

hiσi, (4)

where Ji j and hi are the quadratic and linear coefficients, re-
spectively. In our experimental system, the optical CIM plat-
form can map the target QUBO problem to an all-to-all con-
nectivity Ising Hamiltonian with programmable parameters,
and the optimal solution is obtained via controllable quantum
phase transition processes.

Below, we present two quantum optimization algorithms
that model the computing power scheduling (generalized
multiway number partitioning) problem as a QUBO prob-
lem, along with an optical experimental demonstration and
comparisons to classical algorithms.

3 Algorithms

In this section, we propose two quantum algorithms that de-
scribe the generalized multiway NPP as a QUBO problem
from different optimization perspectives, using scheduling
processes in the cloud-rendering domain as a specific exam-
ple.

To begin, we define a set of binary variables xi j to repre-
sent the state of matching between N tasks and M machines.

Specifically, we set xi j = 1 if task i ∈ {1, 2, · · · ,N} is com-
pleted/started on machine j ∈ {1, 2, · · · ,M}, and xi j = 0 oth-
erwise. The expected duration of task i serves as a weight
number wi, and the total time of tasks are W =

∑N
i=1 wi.

The completion time for tasks performing on machine j is
c j =

∑N
i=1 wixi j+s j, where s j is the idle start time for machine

j, satisfying
∑M

j=1 s j = S. To ensure that task i is assigned to
only one machine, we can add a constraint as follows:

M∑
j=1

xi j = 1. (5)

After that, we have
∑M

j=1 c j = W + S. To begin, we pro-
pose an optimization function for minimizing the overall task
completion time, which is equivalent to determining the min-
imum of the maximum (min-max) values of c j:

min
xi j

max
j
{c1, c2, · · · , c j, · · · , cM}. (6)

By introducing variable u with u ≥ c j ∀ j, the original
problem can be changed to find the minimum values of an
optimization function min f1(xi j) = min u. Then, the inequal-
ity can be transformed into equality using slack-variables
v(s)

j = u − c j ∀ j, and they can be expressed using binary
expansion as:

u =
L−1∑
l=0

2lu(s)
l ≥ 0, v(s)

j =

L−1∑
l=0

2lv(s)
jl ≥ 0, (7)

where parameter L is linked to precision, while u(s)
l and v(s)

jl
take values of zero or one. By incorporating all these con-
straints into the objective function, the optimization function
for the min-max problem is obtained:

f1(xi j) =
L−1∑
l=0

2lu(s)
l + β1

N∑
i=1

 M∑
j=1

xi j − 1


2

+ β2

M∑
j=1

L−1∑
l=0

2l
(
u(s)

l − v(s)
jl

)
−

N∑
i=1

wixi j − s j


2

, (8)

where β1 and β2 are penalty coefficients. The total number of
variables, in this case, is (NM + L+ML). Because of the ad-
dition of slack variables, improving accuracy is dependent on
increasing the number of encoding bits, which is incompat-
ible with applying the algorithm to noisy intermediate-scale
quantum devices.

Alternatively, we can turn to find the optimal scheme with
a balanced load for each machine, which can be realized
by searching a relatively balanced distribution of completion
time [58]; furthermore, it can be transformed into locating the
minimum values of a variance-like optimization function:

f2(xi j) =
1
M

M∑
j=1

(
c j −
W + S

M

)2

. (9)



J. Wen, et al. Sci. China-Phys. Mech. Astron. September (2023) Vol. 66 No. 9 290313-4

When combined with the constraint in eq. (5), the loss func-
tion to be minimized is

f2(xi j) =
1
M

M∑
j=1

 N∑
i=1

wixi j + s j − c̄

2

+ β

N∑
i=1

 M∑
j=1

xi j − 1


2

,

(10)

where the penalty coefficient is β and expected mean value
is c̄ = (W + S)/M. In comparison to optimization func-
tion f1(xi j), this variance-like optimization function f2(xi j)
only requires MN variables, resulting in a significant reduc-
tion in bits/qubits [59]; moreover, it is more consistent with
the definition of the multiway NPP. Therefore, we will use
the latter objective function for the following experimental
demonstration and discussion. Once the optimal {0, 1} series
for xi j is obtained, the tasks to be performed in each machine
can be determined. Both objective functions constructed here

have the QUBO form, and the target solution encoded in the
ground states can be obtained using quantum algorithms such
as quantum annealing [60,61] and quantum approximate op-
timization algorithm [62] on quantum computers. In the fol-
lowing section, we provide an optical experimental solution
based on CIM, which can be a good physical platform for the
QUBO problem, and many large-scale problems have been
solved using this system [46, 47, 50].

4 Experiment

In this section, we present an optical realization and so-
lution to the aforementioned algorithm using CIM. As
shown in Figure 2, the CIM system is a hybrid quantum
computing platform using laser pulses in optical fibers as

Pulsed laser

1560 nm

LO
IM+PM FPGA

SHG

PPLN

BHD

Feedback calculations

Injection

Pump

Measurement

EDFA

(a)

(b)

OPO1 OPO2

···

OPO99 OPO100 OPO101

···

OPO211

OPO1 OPO2

···

OPO99 OPO100

OPO101

···

Time

{Jij}

Ising couplings

c1

c2

···
c99

c100

···j J1jcj

j J2jcj

j J99jcj

j J100jcj

Measurement Feedback calculations Injection

Tc = 211∆t

Figure 2 (Color online) Schematic of the measurement-feedback CIM. (a) EDFA stands for erbium-doped fiber amplifier, SHG stands for second harmonic
generation, PPLN stands for periodically poled lithium niobate, BHD is the balanced homodyne detection, and IM/PM stands for intensity/phase modulator.
The pulses of the local oscillator (LO) are directly obtained from the master laser. (b) The measurement-feedback subsystem. Only 100 of the 211 optical
parametric oscillators (OPOs) are used as qubits, with the remaining pulses used to stabilize the system. The in-phase amplitude c j ( j = 1, · · · , 100) is measured
and used to compute the feedback signal for the next roundtrip. The time interval of each of the two pulses is ∆t = 10 ns, and Tc indicates the transmission
time of optical pulses in the loop.
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qubits for computation, unlike traditional computers that use
semiconductor-integrated chips. The optical quantum com-
puter used here is a measurement-feedback CIM [45], which
includes optical and electrical components and was devel-
oped by Beijing QBoson Quantum Technology Co., Ltd.
(https://qboson.com). The CIM can effectively solve com-
binatorial optimization problems, and its benefits in the max-
imum cut (max cut) problem of fully connected 100000-node
graphs have already been demonstrated in ref. [50].

Lasers, amplifiers, periodically poled lithium niobate
(PPLN) crystals, and fiber rings make up the optical section.
The laser is a femtosecond-pulsed fiber laser with a locked
repetition frequency of 100 MHz. Because the laser output
power (100 mW) is low, amplification is realized using an
erbium-doped fiber amplifier (EDFA). Further, the frequency
of the amplified laser is doubled using a PPLN crystal to pro-
duce a 780 nm laser, which is used as the pump source to
synchronously pump the phase sensitive amplifier to form
degenerate optical parametric oscillation (DOPO) [63-67].
There are 211 oscillating pulses in the fiber loop during the
calculation, with a time interval of ∆t = 10 ns between each
of the two pulses. Therefore, the transmission time of op-
tical pulses in the loop is Tc = 2.11 µs. Aside from the
optical component, the electrical component includes a field-
programmable gate array (FPGA), analog-to-digital/digital-
to-analog (AD/DA) converter, and optical balanced homo-
dyne detectors (BHD). The laser output in the fiber ring and
the laser of fundamental frequency (1560 nm) are determined
by an optical BHD, which can read out the in-phase am-
plitude c j ( j = 1, · · · , 100) of output pulses. Then, these
measurement results are used by the FPGA to compute the
feedback signal for the next roundtrip based on the interac-
tion intensity Ji j between spin i and spin j in the target Ising
Hamiltonian. The Xilinx FPGA used here is capable of sup-
porting digital signal processing multipliers and on-chip re-
source storage. Specifically, the feedback for the k-th pulse
is

∑N=100
j=1 Jk jc j, and the amplitude of this real-valued quan-

tity is used as the control signal of the intensity modulator
(IM), and its sign defines whether the phase modulator (PM)
applies a 0 or a π phase shift.

To test the hardware capability, we run experiments with
cases up to one hundred qubits and design two groups of
experimental schemes that fix the machine (or task) number
while varying other parameters. The CIM used in the exper-
iments has a fixed number of simultaneous oscillating pulses
in the fiber ring for qubits. If the model problem scale is less
than the available qubits, non-computing qubits will be used
to stabilize the system. We assume that the time required for
each task, as well as the idle time for each machine, are both
positive integers taken from set N+. For comparison, clas-
sical algorithms such as SA and tabu search are adopted to

solve the experimental models, which were run 100 times on
a central processing unit (Intel Core i7-10750H, 2.60 GHz
with 16-gigabyte random-access memory) in each problem
setup for obtaining the mean values and standard deviations.

The normalized pump amplitude (NPA), defined as pump
amplitude normalized by the pump threshold of a single iso-
lated DOPO pulse, is displayed by gray dashed lines in Fig-
ure 3. A phase transition occurs when the power of the pump
light is gradually increased to the oscillation threshold, and
cut values increase with running time. The cut value used
in this case is the score of the maximum cut problem, which
is transformed from the original optimization problem [50],
and it is an antilinear measure to the objective function value;
that is, maximization of cut corresponds to the minimization
of the objective function. Then, the light transforms from
squeezed vacuum states to coherent states with phases 0 and
π, corresponding to spin states. The loss of such a spe-
cific single-mode oscillation is minimal and corresponds to
the Ising Hamiltonian ground state. Figure 4 depicts the ex-
perimental spin/binary variable results with problem scales
[N,M] = [10, 4] and [20, 5], respectively. The red nodes in-
dicate +1 (xi j = 1) and blue nodes imply −1 (xi j = 0) for
spins. Thus, we can conclude that the nearly all-connected
graphs are complicated with high optimization complexity,
and experimental output results meet the constraints.

Because the labels xi j = 1 in red nodes indicate that
the task i is assigned to machine j, the optimal scheduling
method can be obtained directly based on the experimen-
tal spin states, as shown in Figure 5. The optimal alloca-
tion scheme has a makespan of 17 and 45, corresponding
to the minimum- and maximum-scale in the experimental
setup, which can be obtained using quantum and tabu search

1×103 1×103

1×103 1×103

1×103 1×103

(a) (d)

(b) (e)

(c) (f)
N M

N MN M

N M N M

N M

Figure 3 (Color online) Cut values with the running time (in millisec-
onds). The panels in the left column ((a)-(c)) set the number of machines to
M = 4, whereas the panels in the right column ((d)-(f)) set the number of
tasks to N = 20. The normalized pump amplitude (NPA) is represented by
gray dashed lines.

https://qboson.com
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(a) [N,M] = [10,4] (b)

Max cut = 1438.2

[N,M] = [20,5]

Max cut = 10656.5

Figure 4 (Color online) Graphs and outcomes for experimental demonstration cases with minimum- and maximum-scales. (a) [N,M] = [10, 4] and (b)
[N,M] = [20, 5]. Notations x[i][ j] = xi j here. The node colors represent different spin results, with red representing +1 and blue representing −1. The
maximum cut value is also indicated.
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Figure 5 (Color online) Scheduling schemes established by quantum (CIM) and classical (SA and tabu) algorithms with different problem scales in the
experiment. (a) [N,M] = [10, 4] and (b) [N,M] = [20, 5]. The x-coordinate refers to different machines, while the lengths of the red and blue parts indicate the
tasks allocated to each machine with corresponding durations, and the gray parts indicate the idle start time for each machine. The makespan (T end

cim , T end
sa and

T end
tabu) of the entire task for various solutions are labeled by dashed lines.

algorithms. This demonstrates the feasibility and correctness
of the quantum algorithm in solving the computing-power
scheduling problem. Note that the optimal scheme is not
unique because of the parameter setting, namely, the degen-
eracy of the ground state of the Ising Hamiltonian.

Furthermore, notations tsa/tabu/cim are introduced to repre-
sent the running time of various algorithms, which is depicted
in Figure 6. A ratio between them is defined as follows:

R(sa/tabu,cim) =
tsa/tabu − tcim

tsa/tabu
(11)

to determine the time-saving (or acceleration) ability of the
quantum algorithm. Given that the CIM solution is quick, a
high ratio of R(sa/tabu,cim) ∈ (0, 1) represents a huge quan-
tum acceleration effect. The CIM solver is concluded to be
faster than classical algorithms, with an average R(sa,cim) =
96.7% and R(tabu,cim) = 98.5% time-saving over SA and

tabu search algorithms, respectively. Another comparable
but more intuitive measure is introduced, namely, X-fold
acceleration, which is defined as X(sa/tabu,cim) = [1 −
R(sa/tabu,cim)]−1. On a 100 qubits scale, quantum solutions
can achieve tens of times the acceleration of classical solu-
tions, with X(sa,cim) = 37.6 and X(tabu,cim) = 94.5. We can
also see that while the time of classical SA algorithm does
not increase significantly with the scale of problem, it does
so at the expense of accuracy, whereas the opposite is true for
the tabu search algorithm. However, the quantum algorithm
can guarantee the correctness and has a consistent running
time of 2.37 ms on average. The solution time does not im-
prove significantly for CIM with an increase in qubits; hence,
greater advantages can be expected in large problem scales.
Furthermore, optical quantum technology has the advan-
tages of long coherence time at room temperature, scalability
in space and time dimensions, and low power consumption
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Figure 6 (Color online) Running time (in milliseconds) of the quantum
algorithm based on CIM and two classical algorithms ((a), (b)) and the time-
saving ratio R(sa/tabu,cim) with problem scale (c). The error bars of classi-
cal algorithms are calculated using the standard deviations of 100 repetitions.
The machine number M = 4 is fixed in (a), whereas in (b), the task number
is N = 20.

(600-800 W), which can considerably reduce the resource
cost when compared with other quantum computing systems.

5 Conclusion

Although quantum computers have been shown to outper-
form classical computers in solving specific problems, devel-
oping quantum algorithms for important mathematical prob-
lems and actual production scenes remains an area of in-
terest. In this paper, we propose two quantum algorithms
from different optimization perspectives for solving comput-
ing power scheduling problems in the cloud-rendering do-
main, which can be mathematically modeled as the general-
ized multiway number partitioning (k ≥ 2) problem, a typical
NP-complete problem. Using a 100-qubit optical quantum
computing system, the feasibility and advantage of the quan-
tum algorithm are experimentally demonstrated, realizing an
average of 96.7% and 98.5% time savings over classical SA
and tabu search algorithms. The CIM-based quantum com-
puting scheme has good accuracy and speed, and the running
time remains relatively stable as the problem scale increases.
Thus, it has an advantage in large-scale problems. Notably,
multiway number partitioning is a fundamental problem, and
many other problems, such as cryptography [40], can also be
reduced to it mathematically. Therefore, our work consid-
erably broadens the practical application scenarios of quan-

tum computers based on hardware with tens of thousands of
qubits [50] that is currently available.

This work was supported by the National Key R&D Plan (Grant No.
2021YFB2801800).
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4 S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt, Rep. Prog. Phys. 85,

104001 (2022), arXiv: 2112.07491.
5 R. P. Feynman, Simulating Physics with Computers: Feynman and

Computation (CRC Press, Boca Raton, 2018), pp. 133-153.
6 P. Benioff, J. Stat. Phys. 22, 563 (1980).
7 S. Lloyd, Science 273, 1073 (1996).
8 P. W. Shor, SIAM Rev. 41, 303 (1999).
9 P. W. Shor, and J. Preskill, Phys. Rev. Lett. 85, 441 (2000), arXiv:

quant-ph/0003004.
10 L. K. Grover, Phys. Rev. Lett. 79, 325 (1997), arXiv: quant-

ph/9706033.
11 G. L. Long, Phys. Rev. A 64, 022307 (2001), arXiv: quant-

ph/0106071.
12 P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503

(2014), arXiv: 1307.0471.
13 H. Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H.

Neven, and J. R. McClean, Nat. Commun. 12, 2631 (2021), arXiv:
2011.01938.

14 A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, Sci-
ence 309, 1704 (2005), arXiv: quant-ph/0604193.

15 A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103,
150502 (2009), arXiv: 0811.3171.

16 B. Horstmann, B. Reznik, S. Fagnocchi, and J. I. Cirac, Phys. Rev.
Lett. 104, 250403 (2010), arXiv: 0904.4801.

17 F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R.
Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen,
Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi,
B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S.
Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T.
Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K.
Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa,
D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrá, J. R. Mc-
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