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Abstract
Ribonucleic acid (RNA) molecules play informational, structural, and metabolic 
roles in all living cells. RNAs are chains of nucleotides containing bases {A, C, G, 
U} that interact via base pairings to determine higher order structure and functional-
ity. The RNA folding problem is to predict one or more secondary RNA structures 
from a given primary sequence of bases. From a mathematical modeling perspec-
tive, solutions to the RNA folding problem come from minimizing the thermody-
namic free energy of a structure by selecting which bases will be paired, subject 
to a set of constraints. Here we report on a Quadratic Unconstrained Binary Opti-
mization (QUBO) modeling paradigm that fits naturally with the parameters and 
constraints required for RNA folding prediction. Three QUBO models are presented 
along with a hybrid metaheuristic algorithm. Extensive testing results show a strong 
positive correlation with benchmark results.

Keywords RNA folding · Structure prediction · QUBO · Path relinking

1 Introduction

QUBO is a general purpose modeling framework that has been applied to many 
specific areas and is currently the primary structure required by quantum annealing 
computers (Boothby and Roy 2016; Choi 2008). In this report, we present QUBO 
models for solving the RNA folding problem, which seeks to predict how base pair-
ing determines RNA secondary structures that enable biological functions associ-
ated with information flow, structure, and metabolism.
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We leverage the conventional approach of optimizing the minimum free energy 
(MFE) associated with an RNA secondary structure with the understanding that a 
given solution to the problem does not necessarily imply a single secondary struc-
ture. Gardner and Giegerich (2004) suggest that asking for a single structure to be 
a consensus for a family of structures is the wrong question and Mathews (2019) 
concludes that base pairs fluctuate, resulting in secondary structure models that rep-
resent alternative states in equilibrium with each other. Thus while MFE is a good, 
albeit imperfect, objective function metric to optimize, sub-optimal solutions can 
also be useful predictors of secondary structure.

Knowing that an exact solution is not necessarily better than a collection of sub-
optimal ones, and considering the combinatoric nature of the problem, the obvious 
direction is a heuristic approach. The heuristic presented here generates a set of vari-
ables representing feasible RNA stem (also known as helix) fragments, from which 
a QUBO instance is generated and then solved with a new, generic hybrid QUBO 
solver. The solver combines a greedy 1-flip search with path relinking, backtracking 
and strategic oscillation around local optima. The software and dataset is available 
for download on GitHub (Verma 2020).

The QUBO solution process is not customized for the specific problem of RNA 
folding, however crafting specific problem characteristics into the QUBO model 
requires some subject matter expertise. Even though any mixed integer program-
ming (MIP) solver, such as Cplex or Gurobi, can be used to solve a QUBO instance, 
binary quadratic problems, especially those with a dense interaction matrix, gener-
ate extremely large mixed integer linear programs. In addition, the linear program-
ming relaxations used to reduce the search tree are generally weak (have a large 
MIP gap), so that the suboptimal solutions found are generally not of high quality. 
Another QUBO solution approach is to use hardware specifically designed to solve 
QUBO problems, such as D-Wave Systems Quantum Annealer (D-Wave Systems 
2020) or Fujitsu’s Digital Annealer (Fujitsu 2020).

In this paper we report on a new approach for a difficult and well-studied prob-
lem in computational biology that has not previously been modeled and solved as 
QUBO. Section 2 presents a survey of the RNA folding literature and QUBO. Sec-
tion 3 describes three QUBO models and algorithm pseudocode followed by compu-
tational testing results in Sect. 4 and then Sect. 5 contains conclusions.

2  Literature review

Predicting the secondary structure of an RNA sequence is known to be NP-Hard 
(Saad et  al. 2012). RNA folding is often solved by dynamic programming (DP) 
based methods (Zuker and Stiegler 1981) with a major limitation being that the 
runtime scales cubically with RNA length and many variants have been proposed to 
address this issue. For instance, Huang (2019) used beam search in conjunction with 
DP to report improved accuracy for long RNA molecules The free energies associ-
ated with base pairs are used to predict RNA structure, and are often incorporated 
into a model as static numbers even though they are not known with certainty. To 
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address this, Yan et al. (2020) have recently developed a graph neural network using 
an adjacency matrix of base-pairing probabilities.

Many scholars have attempted to integrate big data modeling paradigms with 
RNA folding. For example, Zhang et al. (2019) combined a convolution neural net-
work with DP. They developed a technique to classify large scale data to predict the 
base pairing probability and achieved a 30% higher success rate. Singh et al. (2019) 
used a two-dimensional deep neural network and transfer learning for base pair pre-
diction, including non-canonical base pairs and pseudoknots. The model trained 
with more than 10,000 non-redundant RNAs and achieved a statistically significant 
improvement in prediction accuracy compared to traditional methods. For a recent 
survey on RNA folding algorithms, we refer the reader to Fallmann (2017).

The RNA folding problem has also received attention from the quantum comput-
ing researchers. Shi (2019) propose a quantum assisted genetic algorithm to pre-
dict RNA folding. Their algorithm involved multiple populations evolving through 
genetic exchange performed by a transfer operator. The authors concluded that the 
technique improves the prediction accuracy and sensitivity for medium length RNA 
sequences.

QUBO research has its origins in the 1960s, when it focused on pseudo-Boolean 
optimization (Hammer and Rudeanu 1968) and constrained models. When a quad-
ratic binary problem involves constraints, it can be recast into an equivalent uncon-
strained model using quadratic infeasibility penalty terms (Kochenberger et  al. 
2004). In some cases, additional variables are needed to enforce the constraint while 
in others, such as the models we report here, no additional variables are needed. In 
1988, the important physics problem known as Ising Spin Glass was formulated as 
a QUBO using + 1/− 1 variables to denote the spin states (Barahona et  al. 1988). 
As a modeling note, + 1/− 1 variables are easily converted to 0/1 binary variables. 
Four problems in computational molecular biology (Multiple Sequence Alignment, 
Lattice Protein Folding, Contact Map Overlap, and Rotamer Assignment) are pre-
sented as QUBO models in Forrester and Greenberg (2008) along with linearization 
techniques to remove the quadratic components of the model in order to facilitate 
solutions with a general purpose solver. A good survey of quadratic binary optimiza-
tion is provided in Kochenberger et al. (2014) while Lucas (2014) shows the gen-
eral applicability of QUBO modeling by providing details on QUBO formulation 
of many of the well-known NP-Hard problems and a tutorial on QUBO models and 
their modern applications appears in Glover et al. (2019).

Small QUBO models can be solved exactly (Pardalos and Rodgers 1990; ILOG 
2019) but because they are NP-Hard (Pardalos and Jha 1992), heuristic approaches 
are needed for large and dense instances (typically over ~ 1000 variables and over 
20% dense). The QUBO problems solved in this paper contain up to 25,000 varia-
bles at about 40% density. Large problems can require a significant amount of mem-
ory and processing power so that methods to reduce the size include partitioning 
heuristics via graph clusters (Mauri and Lorena 2012). One-pass heuristics can also 
be used to speed up processing of large QUBO (Glover et al. 2002). Preprocessing 
of large QUBO can reduce their size by discovering variables that can be fixed to 
0/1 or that have a fixed relationship to another variable such that these variables are 
eliminated from the original model (Glover et al. 2018). The best known solution 
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technique for QUBO combines tabu search with path relinking (Wang et al. 2012) 
which has been demonstrated to quickly find the best known solutions to widely used 
benchmark QUBO datasets (Beasley 1990; Palubeckis 2006). The QUBO modeling 
approach is the foundation for the D-Wave Systems quantum annealing computer 
(D-Wave Systems 2020) and Fujitsu’s commercial digital annealer (Fujitsu 2020).

3  QUBO models for secondary structure prediction

The fundamental building blocks of both RNA and DNA are nucleotides (nt), often 
referred to as bases, which are composed of a sugar, a phosphate, and a nitrogenous 
base. The only chemical difference between DNA and RNA is the type of sugar 
used, which is deoxyribose for DNA and ribose for RNA. Nucleotides are strung 
together to form DNA or RNA polynucleotides by chemical reactions that result in 
a backbone of alternating sugars and phosphates. The most common nitrogenous 
bases found naturally in DNA are adenine (A), cytosine (C), guanine (G), and thy-
mine (T). In naturally occurring RNA, T is replaced by uracil (U). Bases in DNA 
and RNA occur in ordered sequences that have the informational content required 
for the expression of genes, and in the case of RNA, for additional structural and 
metabolic functions. The ordered sequence of nucleotides is known as the primary 
structure, defined as an ordered sequence ( S = b1,bi,… , bn, ) of length n with bases 
b ∈ {A, C, G, U}. The sequence S is the primary input needed for secondary struc-
ture prediction.

The most important behavior of nucleic acids in terms of understanding their 
functions in nature or using them for biotechnology is base pairing. Base pairing 
refers to the formation of weak hydrogen bonds between two bases. Bases pair with 
each other according to canonical pairings first described by Watson and Crick 
(1953). Watson–Crick base pairing rules are that A pairs with T or U and C pairs 
with G. Additionally, U and G can pair as non-canonical or “wobble base pairs.” 
When successive bases engage in base pairing, single strands of DNA or RNA 
become double stranded. In RNA a single strand folds into secondary structures 
such as stems (helices), hairpins, bulges, and junctions. Figure  1 illustrates a pri-
mary RNA sequence of bases and a secondary structure predicted by the RNA fold-
ing software ViennaRNA (Kerpediev et al. 2015) that includes a stem of 6 base pairs 
and a hairpin loop of 6 unpaired bases. The tertiary structure of RNA is its three-
dimensional shape and is not addressed in this paper.

The strength of each base pair interaction can be measured experimentally and we 
have used those reported by Turner and Mathews (2009). We have adopted the com-
mon practice in RNA modeling of using the Minimum Free Energy (MFE) as a meas-
ure of the stability of RNA secondary structure. In other words it is assumed an initial 
strand of RNA will fold and pair with itself in a way that avoids free energy in the 
secondary structure’s end state. In addition to Watson–Crick canonical base pairing, 
G pairing with U is allowed. Three other rules help determine a set of base pairs that 
can be used as binary variables in an optimization. First, a base can only pair with one 
other base (not multiple bases). Second, the sugar and phosphate backbone of RNA 
is generally not flexible enough to allow pairing between bases having less than d 
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intervening bases. A value of d = 4 is commonly used because hairpin loops with 3 of 
fewer unpaired sequential bases cannot flex enough to make a complete turn. Finally, 
base pairings should not cross, e.g. a base pair in Fig. 1 between A4 (base A in sequence 
position 4) and U22, denoted as A4:U22 is a feasible nested pair with A5:U21. While 
A4:U21 and A5:U22 are feasible base pairs individually, they are not feasible nested 
pairs. Nested pairs create stable structures (sometimes called stacked quartets) that tend 
to minimize free energy. Two base pairs 

(

i1, j1
)

 and 
(

i2, j2
)

 are sequential nested pairs 
if their sequential positions satisfy i1 + 1 = i2 and j2 + 1 = j1 . Figure 2 illustrates the 
difference between non-crossing and crossing base pairing. There are no base pairings 
that cross in the left illustration, while base pairs (4, 18) and (8, 22) are crossing on 
the right. These three rules, along with the base pair weights provided by Turner and 
Mathews (2009) appearing in the objective function, are the basic elements of our opti-
mization models.

QUBO models have the general form

where x is binary and Q is a symmetric n × n matrix of coefficients cij . The defini-
tion and meaning of the binary variables xi and the coefficients ci and cij are critical 
to accurate modeling. The diagonal of Q contain linear terms cii  that quantify the 
effect of flipping a single variable from 0 to 1 without regard to possible interac-
tions with other variables and the off-diagonal quadratic coefficients cij represent 

Max:

n
∑

i

cixi +

n
∑

i

n
∑

j

cijxixj, or equivalently Max x�Qx

Fig. 1  An example of a RNA primary structure (left) and the secondary structure predicted by 
RNA folding software (Vienna RNA Web Service 2020) (right). Color code: green = stem (helix); 
orange = unpaired bases; yellow = interior loops; blue = hairpin loops (Color figure online)

Fig. 2  Non-crossing (left) and crossing base pairs (bold lines)
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the magnitude of the interaction effect when both variables xi and xj are set to one. 
Without loss of generality, xixj = xjxi resulting in a symmetric Q matrix where we 
need only define pairs xixj for i < j.

We will consider three models with differing variable definitions and abilities. 
Model 1 is provided as an example of a very simple model that may appear reason-
able but has deficiencies. In Model 1 let xi ∈ {0,1} indicate whether the base b at 
position i in the sequence of length n =|S| is paired with any other base. The strength 
of the interaction between bases in positions i and j in S is denoted by the coefficient 
cij . Thus if it is important to have both i and j be part of a base pair, then cij is set to a 
positive number indicating a bonus in the objective function and a similar statement 
is made if they should not be in a base pair. However, this variable definition and 
model will not yield a solution indicating which bases are being paired and does not 
allow crossing pair constraints, hence a more accurate model is needed.

A more accurate x′Qx model will identify which base is paired to another and 
also include constraints such as the singularity constraint 

n
∑

k

xk ≤ 1∀i ∈ S , which 

restricts a variable to one base pair, and crossing pair constraints, defined as two 
matched pairs (i, j) and 

(

i′, j
′)

, where 
(

i < i′ < j < j′
)

 . In order to avoid selecting base 
pairs that cross, additional constraints are needed and these will also be incorporated 
into the objective function to yield unconstrained x′Qx.

In general, any set of constraints Ax ≤ b may be transformed to the objective 
function to yield an equivalent unconstrained form Kochenberger et al. (2004). The 
conversion requires additional slack variables, one for each inequality constraint, 
to convert to the equality sense needed to generate associated penalty terms in the 
objective function:

where P is a scalar penalty term, A is the matrix of constraint coefficients and b = 1.
In Model 2, a variable xi,j

k
  no longer represents a single base, but a feasible base 

pair (i, j) , where i and j ∈ S. Thus, xi,j
k

 ∈ {0, 1} indicates whether the base b at position 
i in the sequence of length n =|S| is paired with base b at position j and an enumera-
tion of feasible base pairs meeting minimum distance and base pairing requirements 
is required in order to build a problem instance. Let P = ((b1, b2), …, (bi, bn)) be an 
ordered sequence of feasible pairings from set S with worst case |P|= n * (n − 1) and 
the index k in xi,j

k
 varies from one to |P|. The linear term ck is the magnitude of the 

weight associated with the base pair k and the interaction between nested pairs k 
and l is ckl . The quadratic coefficients ckl are the negative of the thermodynamic free 
energies published in Turner and Mathews (2009) in order to match the maximiza-
tion sense of the QUBO objective function.

Penalty terms in the objective are used to implement both the singularity and 
non-crossing constraints. If a feasible base pair k crosses with another base pair l, 
then the quadratic penalty term ckl =  M−, where  M− is a large negative number that 
serves to prevent the selection of both xk and xl (where the superscripts are removed 
for brevity). Likewise, a quadratic penalty term also prevents the selection of the 

Max:

n
∑

i

n
∑

j

cijxixj + P(Ax − b)t(Ax − b)
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same base in more than one base pair. When xkxl = 1 a feasible nested pair (stacked 
quartet) becomes part of the predicted fold. Although this model is simple, it incor-
porates all the necessary constraints. As a comparison, using mixed integer linear 
programming (no quadratic variables) as the modeling paradigm requires two con-
straints for each pair of variables (Gusfield 2019) which generates a large number 
of constraints, e.g. a Q with n = 1500 and 50% dense would generate over a million 
constraints.

This second model incorporates all three sets of constraints (base pairing, singu-
larity, emphasis of nested pairs). However, it generates a large number of variables 
because all feasible parings of two bases are enumerated. Another disadvantage of 
this model is that by defining a variable as a single base pair allows unpaired bases 
on either side of the pair creating a helix (stem) of length one, sometimes called 
“lonely pairs”. This is not a good modeling practice for creating stable secondary 
structures since single base pairs tend to destabilize the secondary structure (Find-
eiss et al. 2018).

Model 3 addresses both size and stem length concerns. It dramatically reduces the 
number of variables generated by having the variable xk represent a sequential nested 
pair (stacked quartet) of 4 bases, hence xi

1,j1,i2,j2

k
 {0, 1} indicate the pairs  

(

i1, j1
)

 and 
(

i2, j2
)

 are both feasible and nested, i.e.  i1 + 1 = i2 and j2 + 1 = j1.  The four super-
scripts are removed for brevity in future references. The linear terms used for all 
combinations of feasible stacking are shown in Fig. 3 and are taken from (Mathews 
2020; Turner and Mathews 2009). The rows of Fig. 3 are the first base pair of xk and 
the columns the second. The quadratic interaction terms between stacked quartets 
are a bonus  M+ used to promote nesting and sequencing with other nested pairs in 
order to generate long stable stems.  M− prevents crossing nested pairs and assigning 
a base to more than one nested pair.

As an example of the use of  M+ and  M−, consider three variables from Fig. 1, 
where the base type has been added to the number in the sequence. Let x1 = {(4A, 
22U), (5U, 21A)}, x2 = {(5U, 21A), (6C, 20G)} and x3 = {(4A, 19U), (5U, 18A)} 
represent a subset of the possible nested pairs. In the Q matrix,  c1,2 =  M+ to support 
a long stem formed by x1 and x1 while c1,3 =  M− to penalize assigning 4A to more 
than one nested pair.

                            Stacked pair 5' to 3'
AU CG GC UA GU UG

AU 0.9 2.2 2.1 1.1 0.6 1.4
CG 2.1 3.3 2.4 2.1 1.4 2.1

5' GC 2.4 3.4 3.3 2.2 1.5 2.5
to UA 1.3 2.4 2.1 0.9 1 1.3
3' GU 1.3 2.5 2.1 1.4 0.5 -1.3

UG 1 1.5 1.4 0.6 -0.3 0.5

Fig. 3  Stacked Quartet free energies (kcal/mol) from Turner and Mathews (2009)
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Figure 4 shows the variables used in the three models and the meaning of their 
quadratic interactions. Model 3 reduces the number of variables by approximately 
one-third compared to Model 2, incorporates all constraints via penalties, eliminates 
the possibility of single pairs, and supports the creation of long stems. Because the 
objective function includes  M+ terms that are not derived from experimental obser-
vations of base pair energies, we differentiate the QUBO objective value measure 
from MFE by denoting it QMFE. A comparison of QMFE and MFE results pre-
sented in Sect. 4 showed a strong positive correlation between the two measures.

As an example of the output provided by Qfold consider Fig. 5 showing a pro-
gression of solutions from left to right representing a progression from high to low 
free energy for the molecule PDB_00727 (length = 34 bases). The problem actually 
starts with no bases paired, then grows the central stem feature by selecting vari-
ables that optimize QMFE.

A pseudoknot is a complex stem-loop structure in which half of one stem is 
between the two halves of a second stem because of crossing base pairs (see Fig. 2). 
Pseudoknots are often disallowed in RNA secondary structure prediction because 

Fig. 4  Illustration of the binary variables and their quadratic interaction

Fig. 5  Qfold solution progression to optimal free energy via stem growth
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they complicate the prediction process by increasing the number of possible inter-
actions to consider and because they cross the boundary from two-dimensional to 
three-dimensional RNA modeling. However, pseudoknots involving the feasible 
base pairs generated can be incorporated by simply removing the penalty  M− or 
lowering its magnitude to represent a soft constraint wherein base pair crossing is an 
allowable option if it improves the objective function by an amount greater than the 
soft penalty incurred.

3.1  Pseudocode

Qfold is the term we use to denote the combination of variable enumeration and Q 
matrix generation followed by solution via QUBOsearch. At a high level, the pro-
cess enumerates from a sequence S the feasible base pairs greater than min_d mini-
mum distance and generates a Q matrix.

3.1.1  Enumeration of feasible nested pairs

The two main functions of Qfold are to generate the Q matrix from the input RNA 
sequence and to calculate the solution to Max: x′Qx . The coefficients comprising the 
Q matrix are based on the variables generated and their interaction effects. The vari-
ables generated are determined by nesting of feasible base pairings.

A Q matrix is generated by first discovering feasible base pairs meeting the mini-
mum distance (min_d) requirement. This O(n2) operation is performed only once 
and consists of checking if base i will pair with base j = i + min_d up to the length n 
of S. The calculation of the variables representing nested pairs is similar. The inter-
action weights between nested pairs (Fig. 3) and the  M+ and  M− terms are computed 
with the output being a Q matrix in (row, col, value) format.

The set P contains all feasible pairings (i, j) where, for example a feasible pair 
is  Si is a C nucleotide in position i and  Sj is a G in position j. A feasible pair satis-
fies the minimum distance criteria allowed between pairs and is either A-U, U-A, 
C-G, G-C, U-G or G-U. In other words, A does not pair with C or with G. RNA 
is described as having a starting nucleotide designated as 5′ and an ending nucleo-
tide designated 3′. In our looping structures below, the index variables start at the 5′ 
beginning of the strand sequence and moves towards the ending 3’.
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The matrix Q contains information on all sequential nested pairings of feasible 
base pairs P. The interaction bonus between nested base pairs is  M+ and penalties 
 M− ensure that a gene at position i is only paired with one other base (or none) and 
that crossing pairs are not selected.

3.1.2  Solving QUBO

There are many software and hardware products available for solving x′Qx . Com-
mercial solvers such as Cplex and Gurobi are powerful mixed integer linear pro-
gramming solvers capable of solving quadratic binary optimizations. D-Wave Sys-
tems (2020) and Fujitsu (2020) have developed hardware that specifically solves 
QUBO problems. A web based QUBO solver based on (Glover et al. 2019) is avail-
able at (Meta-Analytics 2020).

As the size and density of the Q matrix increases, the problem tends to become 
more difficult to solve because it involves NP complexity with exponential growth so 
that metaheuristics are employed to generate good answers in a reasonable amount 
of time. The metaheuristic presented in Qfold is a hybrid combining greedy 1-flip 
neighborhood search, followed by path relinking between elite solutions, backtrack-
ing and strategic oscillation to break out of local optima, and restarts after these 
methods stop yielding improvements. The program also includes some customiza-
tion involving RNA folding in that it accepts benchmark structures for comparison 
measures and outputs an RNA sequence with dot-parenthesis data used to visualize 
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the structure. Qfold also incorporates a one-pass post-processing routine that looks 
for obvious missed pairs. Qfold is available on GitHub at Verma (2020).

The primary power of QUBO_search is its ability to quickly evaluate the effect of 
flipping a single bit,  xi = 1 − xi, allowing selection of the variable having the great-
est effect on a local solution in O(n) time (Kochenberger et al. 2004). This efficient 
1-flip evaluation is a part of all the hybrid components and the main component 
of the greedy 1-flip neighborhood search, which returns the best (most improving) 
move. The search reads in a starting solution and then improves upon it until a local 
optimum is encountered, wherein additional routines try to break out of the locality 
and improve the solution, and if those fail then a new starting solution is read.

A set of good starting solutions can greatly improve the performance of an algo-
rithm tasked with exploring a large solution landscape, especially if the starting 
solution happens to be close to an optimal. Uniformly random starting solutions are 
often employed as a default method of providing an approximate cover of the solu-
tion landscape, i.e. generating a diverse set of starting solutions. However, as prob-
lem size increases, the number of restarts becomes relatively smaller compared to 
the number of solutions explored during the search. For example, RNA molecule 
ASE_00001 generated a Q matrix with n = 4269 variables and in 60 s over 530,000 
solutions were explored using only 113 different starting points, or 0.02% of all 
solutions evaluated. Given that the number of starting solutions will be relatively 
small, generating a good set of starting solutions is important.

A set of starting solutions using Design of Experiments (DOE) methods allevi-
ates the problem of a small set of starting points providing a good cover of the land-
scape. The experimental design approach used is a 2-level m x n fractional factorial 
table where m is the number of solutions generated based on the number of variables 
n in Q. For example if n = 7 then 8 solutions are initially created and then 8 more 
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are generated by taking the complement (1 – xi) of the first set, producing 16 start-
ing solutions. As illustrated by Fig. 6, the probability of a variable xi being set to 1 
is exactly 50% instead of using a uniform random distribution where, for example, 
prob(x5 = 1) < 20%. Regardless of size, the set of precomputed DOE solutions will 
always have this equal probability distribution. The experimentally designed solu-
tion table is only used for starting solutions and readers are referred to Lewis and 
Kochenberger (2016) for further details.

Path relinking is a powerful tool for improving solutions via search intensifica-
tion around elite solutions. The general concept is to start from an initial solution 
and move towards a guiding one while exploring the reduced solution space consist-
ing of the possible combinations of difference bits. Figure 7 illustrates the concept. 
In Qfold, path relinking is implemented as a greedy 1-flip search over the differ-
ence bits. Path relinking is employed with a long term memory tracking the number 
of times a bit has been flipped since the program started so that variables that are 

Fig. 6  Randomly setting variables in starting solution is not uniform when using a small sample size

Fig. 7  Example of Path Relinking Implementation
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repeatedly being flipped are not selectable until their flip count is less than a set per-
centage of the total count of bit flips.

Backtracking is an approach to break out of a local optima by undoing k = back_
track number of recent 1-flips for variables i, creating a set of variables B = {xk

i
 } 

created where |B|= k. The concept of backtracking is related to the idea suggested 
by Laguna and Glover (1993) and Glover (2020) that improving moves are more 
likely to select attributes of optimal solutions than non-improving ones. Hence back-
tracking a number of moves from a local optima and restarting the search from that 
point seems a reasonable way to explore the area near the local optima via ascend-
ing moves. Backtracking restarts the search process with a tabu tenure based on the 
back_track parameter, restricting xk

i
∈ B from being selected from the candidate list, 

thus avoiding repetitions of the same sequence of flips that led to the local optimum 
encountered. The repeat parameter determines how many times to backtrack before 
moving on to Strategic Oscillation. A value of back_track close to size n has the 
effect of restarting the search at the beginning solution, but with tabu tenures based 
on a short term memory set at the beginning of the backtrack routine. If back_track 
is small, then the search is confined to the neighborhood space close to the local 
optimum.

The Strategic Oscillation (SO) routine is entered if the objective of the current 
solution is within 90% (the critical level) of the current best for the given starting 
solution, which is not necessarily the current incumbent. The neighborhood around 
this critical level is searched via a greedy 1-flip where non-improving (destructive) 
flips are allowed if they are the best possible move. The key difference being that 
greedy 1-flip in the other areas of QUBO_search will not allow selecting a variable 
to be flipped if it degrades the current solution. Unlike traditional SO techniques that 
would leverage problem specific information or constraint limits to gauge when to 
reverse direction, e.g. filling a knapsack beyond its capacity and then reversing by 
removing items, our generic SO simply allows destructive moves. SO is terminated 
after back_track number of iterations.

4  Computational testing and results

The RNA secondary STRucture and statistical Analysis Database (RNA STRAND) 
is a collection of secondary structures determined experimentally or through 
comparative analysis for a large variety of natural and synthetic RNA molecules 
(Andronescu et  al. 2008). Qfold was tested using the base sequences of over 453 
RNAs from RNA STRAND Database (2008). Testing was performed using 64 bit 
Windows 7 on an 8-core i7 3.4 GHz processor with 16 GB RAM. The Qfold soft-
ware was developed and compiled in C with Visual Studio 2019 and the testing 
was coordinated via Python. From a computation standpoint, the best practices for 
benchmarking RNA secondary structure prediction suggested by Mathews (2019) 
were used as a guide. The magnitude of the penalty term  M− was set to a relatively 
large value of − 2000 to guarantee no sub-optimal solutions are generated that vio-
late constraints. The magnitude of the bonus term  M+ used to reward the nesting of 
nested pairs to create long stems was set to 1.6 which is the average Free Energy 
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Change at 37° C. Detailed test data along with Python code and Qfold executables 
are available on GitHub for download and testing using Windows machines (Verma 
2020).

4.1  Problem characteristics

RNA STRAND problem characteristics vary widely and summary data is provided 
in Table 1. Figure 8 taken from Mamuye et al. (2016) provides examples of common 
structural RNA characteristics and Table 2 shows the percentage of structural char-
acteristics in the problems tested. For example 37% of the RNA in the test set have 
pseudoknots in their benchmark descriptions, which adversely affects comparison 
measures for these results because Qfold does not currently implement the genera-
tion of pseudoknots.

Table 1  Summary problem 
characteristics Total number tested 433

Number experimentally validated by NMR or X-ray 86
Average RNA length 40
Min RNA length 12
Max length 545
Average number of stems 2
Average number of base pairs in stems 12

Fig. 8  Examples of com-
mon structural characteristics 
(Mamuye et al. 2016)
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4.2  Results

We measured the performance of Qfold using 431 of the RNAs found in the RNA 
STRAND database. To calculate measures of comparisons to the benchmarks 
reported we tallied True Positive (TP), True Negative (TN), False Positive (FP) and 
False Negative (FN) counts to calculate F-scores and Matthew’s Correlation Coef-
ficients (MCC). An F-score can be interpreted as the percent of the structure that 
is correctly predicted. It is calculated from Precision and Recall: F-score = Preci-
sion * Recall/(Precision + Recall), where Precision = TP/(TP + FP) and Recall = TP/
(TP + FN). F-score is known as the harmonic mean of Precision and Recall and is a 
common measure in classification, however it does not take into account True Nega-
tives. MCC combines TN, TP, FN, FP and is widely used in machine learning and 
bioinformatics. MCC varies between − 1 to + 1 where + 1 is perfect agreement, 0 
is same as random, and − 1 is no agreement between binary classifications. F-score 
ranges from 0 to 1 wherein 1 represents the best value having perfect precision and 
recall.

A comparison of MCC and F-score over RNA length is shown in Fig. 9. The 
graphs illustrate a gap between MCC and F-score that widens as the length of the 
primary RNA structure increases, indicating that larger RNA have more ending 

Table 2  Structural characteristic 
percentages in problems tested

% Includes % Excludes

Pseudoknots 37 63
Non-canonical 36 64
Multi-branch loops 66 34
Internal loops 56 44
Hairpins 59 41

Fig. 9  Comparison of Qfold F-score and MCC to benchmark data as RNA length increases



 M. W. Lewis et al.

1 3

state possibilities, that may have low MFE but do not correlate well with the sin-
gle benchmark structure.

Precision and Recall are also commonly used comparison measures. Precision 
measures the percent True Positives out of all predicted positives and is mean-
ingful when the emphasis is on avoiding false positives, such as saying a base 
is paired when it is not paired in the benchmark. Recall measures the percent 
True Positives out of actual positives and is meaningful when the emphasis is 
on avoiding false negatives, such as saying a base is not paired when it is paired 
in the benchmark. As RNA length increases, these measures tend to converge to 
just above 60% (see Fig.  10). These F-score, Precision and Recall results align 
with those of other approaches. For example, Chen et al. (2020) reported an aver-
age F-score range from 0.4 to 0.6 for the six prediction methods they used for 
comparison.

Because pseudoknot prediction greatly increases complexity and is associ-
ated with tertiary structure prediction, many RNA folding prediction programs 
do not include the capability to predict pseudoknots. Figure 11 shows the distri-
bution of MCC according to accepted categorizations of MCC values for RNA 
without pseudoknots. The average MCC for the test set of all 268 RNA without 
pseudoknots was 58% (a strong correlation between Qfold results and the bench-
marks) and the percent of moderate to very strong correlations was 78%. Includ-
ing the RNA with pseudoknots, the average MCC was 48% and 63% of the Qfold 
models showed moderate to very strong correlation to the benchmark secondary 
structures.

While Qfold optimizes RNA folding using available free energy measure-
ments between nested base pairs, it also relies on bonuses in the quadratic term to 
reward stacking variables in order to create stems and these values are not exper-
imentally determined. Because of this, we investigated the correlation between 

Fig. 10  Qfold Precision and Recall metrics against benchmark data as RNA length increases
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Qfold objective function value (QMFE) and MFE and found a strong positive cor-
relation of R = 62%. We also found a strong correlation of 64% between QMFE 
and MCC. Thus QMFE is a good proxy for both MFE and MCC.

The number of variables generated for the QUBO is a key concern since prob-
lems are generally more difficult to solve as they grow. The effect of RNA length 
on QUBO size is illustrated in Fig. 12 and shows a quadratic, or O(n2), relationship. 
RNAs with over 1000 bases were solved but the QUBO size approached 30,000 var-
iables, which is the limit for Qfold data structures using 64 bit addressing.

We also investigate the correlation coefficient R between structural characteristics 
and F-score and MCC as those structural characteristics increase. One might ask, 
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is MCC positively correlated with increases in the number of pseudoknots in the 
benchmarks? Table  3 shows that as the number of pseudoknots increases F-score 
and MCC decrease, and in general, as the structural complexity of RNA increases, 
the similarity to the benchmark secondary structure decreases.

Experimentally verified structures are examined in a stable in vitro environment 
although structures formed in situ may be differ due to factors not present in the lab. 
Furthermore, most of the benchmarks use Comparative Sequence Analysis which is 
an in silico approach—sssnot an experimentally verified in vitro benchmark. Only 
20% of the benchmarks are experimentally verified and for this group of RNA the 
average MCC was 71%, while the average MCC for the Comparative Sequence 
Analysis group was 42%. The asterisked entries in Table 3 illustrate additional dif-
ferences. For example, for those RNA whose structure has been experimentally veri-
fied, RNA length had no correlation to F-score.

4.3  Effect of parameters and weights

Various parameters impact Qfold results. The main parameters in Q_generation (S, 
min_d, weights) are min_d (minimum distance between base pairs), which affects 
the feasible base pairs generated, and the weights (refer to Fig. 3) used to create the 
coefficients in the Q matrix. The minimum distance between base pairs affects the 
number of feasible variables generated. A smaller minimum distance implies more 
variables generated and more possible structural characteristics. The interaction 
weights used in the objective function guide the progression of solutions towards 
an optimal minimum free energy and a small change in the weights may have large 
changes in the structure as described in Sect. 4.3.2.

Table 3  Correlation coefficient 
R values between structural 
characteristic growth and 
F-score and MCC

*Verified VIA comparative sequence analysis
**Verified via X-ray or NMR

Morphology characteristics Averages

MCC F

Pseudoknots − 0.98 − 0.95
Bulge loops** − 0.86 − 0.24
Hairpins − 0.83 − 0.81
Multi-loops − 0.80 − 0.86
Bulge loops* − 0.71 − 0.50
Number base pairs in stem − 0.55 − 0.43
RNA length* − 0.54 − 0.42
Max stem length* − 0.50 − 0.51
Number of stems − 0.48 − 0.32
Max stem length** − 0.41 − 0.09
RNA length** − 0.36 0
Internal loops − 0.27 − 0.10
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4.3.1  Effect of min_d

The minimum distance parameter defines the number of unpaired bases allowed in a 
hairpin loop peripherally affects other structures such as bulges and inner loops and 
thus may affect both the final solution as well as sub-optimal ones. In accordance 
with other approaches, the default value used was four. In Fig. 13 (top), for molecule 
PDB_00317 (length = 28 bases), min_d = 4 and this produces the progression of 
solutions with increases in pairing and stem length and subsequent decreases in free 
energy. The progression of solutions in Fig. 12 (bottom) uses min_d = 3. Although 
both settings arrive at the same ending solution and MFE, and these correspond well 
with the RNA STRAND benchmark, the paths taken are different, generating differ-
ent sub-optimal solutions and illustrating that min_d can affect solution progression.

4.3.2  Effect of base pair weights

The weights used to quantify interactions between nested base pairs in the Q matrix 
can make a large difference in the results obtained. For Qfold, we implemented 
the 36 weights used by and Turner and Mathews (2009) and implemented in Vien-
naRNA. However, the 36 weights used by Kelly and Didulo (2018) at Kelly Bio-
informatics (Kelley 2020) differ on average by 11% from those of Turner, with the 
largest being a 140% difference (1.3 versus − 0.5 kcal/mol) in the value of G-U: U-G 
wobble pairs. The RNA structure PDB_00072 (length = 545 bases) illustrates the 
effect of these changes. Figure 14(a) shows the secondary structure verified by X-ray 
crystallography and 14(b) shows the morphology using weights provided by Kelly, 
while (c) is the Qfold result using weights from ViennaRNA, and (d) is the result of 
ViennaRNA. No other parameters were changed. The shapes of the two Qfold struc-
tures are noticeably different, with the Kelly weights providing a better match to the 
X-ray verified structure.

Fig. 13  Effect of parameter min_d on sub-optimal solutions generated for PDB_00317
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4.4  Algorithm component discussion

The intent of this investigation was to show that a relatively simple QUBO model 
for the RNA folding problem was a reasonable one and that using a generic QUBO 
solver, as opposed to a customized for the problem, would help demonstrate that the 
model approach was indeed appropriate. Our definition of a generic QUBO solver 
was one with three basic elements: efficient 1-flips, methods to handle local optima 
and proven solution improvement techniques. Customized solution approaches to 
leverage known structural motifs and manage pseudoknots as well as large problem 
instances are topics for future research.

To address questions regarding the impact of algorithmic options in the generic 
solver, Table 4 summarizes the average effects of using Path Relinking (PR) only, 
PR and Strategic Oscillation (PR + SO) and PR and Backtracking (PR + BT) with 
column A being the method discussed in Sect.  3.1.2 that incorporates all three 
options. The results use the same test set as described in Table 1 and indicate that on 
average method A was faster to the same solution quality. However, the Path Relink-
ing only option appears the better approach for RNA with over 250 bases.

An anecdotal and empirical time complexity analysis indicates the majority of 
time spent is in the search for local optima while less than 5% of the time was spent 
in path relinking, backtracking and strategic oscillation phases. These are only trig-
gered after a local has been discovered, so improvements to finding local optima 
are warranted and future research using more sophisticated solution techniques 
such as meta-analysis to dynamically adjust backtracking and strategic oscillation 

Fig. 14  Morphology changes due to differences in interaction weights

Table 4  Time and MCC comparisons for alternative implementations of Qfold

# Bases Time to solution (s) MCC (%)

A PR only PR + SO PR + BT A PR only PR + SO PR + BT

1–50 46 56 57 58 79 79 79 79
51–100 29 43 44 43 70 70 68 69
101–150 28 33 42 47 51 53 51 54
151–250 30 60 60 60 28 23 32 22
> 250 55 52 59 58 30 35 35 36
Averages 38 49 52 53 52 52 53 52
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parameters, as well as improved path relinking via a managed pool of diverse elite 
solutions along with using relinking during the greedy search phase may be fruitful 
for improving time to solution and MCC.

5  Conclusions

We introduce a Quadratic Unconstrained Binary Optimization (QUBO) model for 
RNA secondary structure prediction and to the best of our knowledge, no other 
quadratic binary RNA secondary structure prediction model has been reported in the 
literature. We present three models in which the binary variables and their quadratic 
interactions support increasing RNA stem length and explore in detail the model 
that promotes the formation of long RNA stems in order to reduce free energy. 
Results indicate our QMFE objective function is strongly correlated to the standard 
MFE measure used by other RNA folding programs. We describe, implement and 
test a hybrid metaheuristic for solving QUBO problems and demonstrate results that 
strongly correlate with RNA benchmarks. The effects of parameters such as min-
imum distance between base pairs and energy weights on solution progression is 
presented.

The QUBO model tested in this paper uses a single six by six table of 36 base pair 
interaction weights, which is only a small subset of the available RNA base inter-
action data. Other approaches pull data from thirty-six 16 × 16 tables of energies 
associated with all possible 2 × 2 interior loops in a stem and include details such 
as differences in energy associated with base position and loop closing versus non-
closing base pairs. Therefore, incorporating these additional details into the QUBO 
model, along with defining binary variables representing structures more complex 
than stems (motifs) are promising areas for future research. Customizing the search 
process to avoid, or to seek out, certain structural motifs and adjusting penalty mag-
nitudes to create soft constraints on crossing pairs, hence allowing pseudoknots, is 
also promising. As RNA folding problems and the QUBO they generate become 
larger, more efficient and accurate methods of structural prediction will be needed.
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