一文读懂神奇的量子反常霍尔效应,科技革命有望由此产生!

薛定谔了么
2024-08-23 17:55:57
量子信息
量子科普


2018年度国家科技奖励大会于2019年1月8日在北京举行,中国科学院院士、清华大学副校长薛其坤教授领导的清华大学、中科院物理研究所实验团队完成的“量子反常霍尔效应的实验发现”项目,获得本年度国家自然科学奖项中唯一的一等奖。


那么,量子反常霍尔效应到底是一种怎样的物理现象,它的发现为何能引起如此巨大的反响,利用它真的能够造出下一代电子计算机吗?


这篇文章将从经典电磁学中的霍尔效应说起,逐步带领各位读者一窥当今固体物理学研究的最前沿。


霍尔效应——老树开新花


不难看出“量子反常霍尔效应”的名字中有“霍尔效应”这个中心词,无论多么“量子”,多么“反常”,认祖归宗之后本质上还是一种“霍尔效应”。这一电磁学领域的经典效应发现于140年前,现早已成为了高中物理课本中的重要内容。我们且做一个简单回顾,唤醒各位读者沉睡已久的记忆。


【1879年,24岁的霍尔(E•H•Hall)是约翰·荷普金斯大学罗兰教授的研究生。当时还没有发现电子,也没有人知道金属中导电的机理,科学家们对很多问题持不同的看法。霍尔注意到著名的英国物理学家麦克斯韦和瑞典物理学家爱德朗在一个问题上的分岐:


●麦克斯韦在《电磁学》一书中写道:“在导线中,电流的本身完全不受磁铁接近或其它电流的影响。”


●爱德朗在一篇文章中说:“磁铁作用在固态导体中的电流上,恰如作用在自由运动的导体上一样。”


霍尔在罗兰教授的支持下,准备用实验来回答这样一个问题:磁场对于在导线中通过的电流到底有没有影响?霍尔设想,如果在固定导体中的电流本身被磁铁吸引,那么电流会被拉向导线的一侧,因而电阻应该增加。实验进行了许多次,第一次在磁场中放进一个通以电流的银制扁平螺线,未发现电阻增大现象;第二次在磁场中放进一个通以电流的金属圆盘,也未发现电阻增大现象;第三次考虑到金属圆盘太厚了,所以改成薄金箔代替,结果成功了。图1是霍尔笔记中的实验示意图,标明了在磁场的影响下,在电流方向和磁场方向的垂直方向上出现了电势差(能产生电流)。



霍尔将这一发现以《磁铁对电磁的新作用》一文发表于当年《美国数学杂志》上。当时新闻界誉为“过去五十年中电学方面最重要的发现。”著名的英国物理学家开尔文认为,霍尔的发现可以和法拉第发现电磁感应相比拟。


青年霍尔一举成功的事实说明,青年人不应该迷信权威,权威之间也不是完全一致的,也有矛盾,也有分岐,只有通过事实(实验)才能检验出是非来,而且检验的过程很可能孕育着新发现和新突破。】


霍尔效应是指,如果将条形导体置入与其表面垂直的磁场,并在长度方向通过电流时,导体内的电荷将在洛伦兹力的作用下偏向导体的某条长边,继而在导体内部宽度方向上产生(霍尔)电压的现象。下方的示意图非常清晰的表现了霍尔效应的产生原理。



霍尔效应示意图,作者Peo


最初,自由电子在未通电的导体内部做不规则的杂乱运动。



动图1:未通电导体中无规则运动的电子,


来源:中国科普博览


当在两端外接电源导线,形成回路后,电流从导体流过,导体内电子做沿着长度方向的漂移运动。



动图2:外加电源形成回路后的导体,来源:中国科普博览


此时再加入磁场后,电子受到洛伦兹力作用,发生偏转,偏转的结果将使得大量电子堆积于导体一侧,这些堆积的电子将产生纵向电压。



动图3,外加磁场后导电回路中的电子运动,


来源:中国科普博览


最终,纵向电压向电子施加的电磁力与磁场形成的洛伦磁力将达到平衡,使得后来的电子能顺利通过不会偏移,此时产生的内建电压称为霍尔电压。



动图4,建立平衡后的导体回路,


来源:中国科普博览


在发现140余年的时间里,霍尔效应在电力电子,特别是传感器等领域获得了广泛的应用。现代汽车上应用霍尔效应原理制成的霍尔器件包括,汽车速度表及里程表,各种用电负载的电流检测及工作状态诊断,发动机转速及曲轴角度传感器,各种抗干扰开关等等。



建立霍尔平衡过程的示意图


量子霍尔效应——欢迎进入量子世界!


霍尔效应的概念本身还算易于理解,当其与量子理论结合时又将擦出怎样的火花呢?


我们知道,当物理学研究对象本身的维度进入到微观领域时,与我们在宏观世界中的日常经验完全迥异的量子理论就将掌控各种物理规律。此时,若干物理量的连续变化将呈现为间断性变化,体现出量子特征。举个不太确切的例子,宏观世界的苹果,有大有小,苹果的大小可以连续变化。而微观世界中的苹果,大小就不是连续变化的了,而是相当于某个基础苹果尺寸的整数倍,不存在其它尺寸的微观苹果。



在量子力学的世界中,很多物理量都是某一基础值的整数倍


继续量子霍尔效应的话题,高中物理知识告诉我们,在无限大均匀平面磁场中,以垂直磁感线方向入射的初速不为零的电子将做匀速圆周运动。而在经典的霍尔效应导体中,载流电子虽然会在磁场作用下发生偏转,但由于偏转半径很大,尚未完成圆周运动就会堆积在导体一侧。


那么,有没有什么条件可以让霍尔效应导体中的载流电子在导体内部完成圆周运动呢?这样的条件还真的存在!在足够低的温度,和非常强的外加磁场下,电子的偏转半径将显著减小,从而可能在导体内部完成圆周运动。



动图5:量子霍尔效应示意图,来源:中国科普博览


此时的导体内部仿佛存在无数个高速转动的“陀螺”。当外加磁场继续增大,电子的回旋半径将进一步缩小,当它小到与电子本身近似的微观水平时,量子效应就产生了!发生量子霍尔效应时,导体内部电子原地圆周运动,而导体边缘电子形成导电通路。



量子霍尔效应示意图,当外加磁场持续增加,电子回旋半径持续减小


我们用霍尔电压与通过电流的比值定义霍尔电阻这个物理量。当外加磁场比较小时,霍尔电阻将随着外加磁场的增加而增加,两者呈现线性关系。当外加磁场继续增加到某一值后,霍尔电阻将维持不变。若外加磁场进一步增加,霍尔电阻将忽然跃上一个新的平台,曲线整体呈现阶梯状。这样不连续的变化趋势,正是量子效应的显著特征。



量子霍尔效应发生时的物理特性


神奇的地方还不止于此,如果我们同时关注该霍尔导体本身的电阻,我们会发现当霍尔电阻位于平台的时候,导体自身的电阻消失了!实际上,此时导体内部的广阔区域中是没有电流通过的,电流只在导体的边缘流动。


量子反常霍尔效应——开启电子技术新时代


量子霍尔效应具有多种神奇而充满魅力的特点,但是它的产生需要依赖于强外加磁场的条件,因此缺乏实用性。试想,如果开发一枚具备量子霍尔效应的超导芯片,虽然其本身具有低发热、高速度等有益特点,但维持其运转可能要配备上一台冰箱一样大小的强磁场发生器,这是我们无法接受的。


那么,有没有一种材料可以不依赖强磁场就能产生量子霍尔效应呢?这种材料就是大名鼎鼎的拓扑绝缘体。自从2007 年面世后,拓扑绝缘体在全世界吸引了堪比石墨烯的关注度。薛教授和其团队正是受其启发,将拓扑绝缘体和铁磁性材料有机结合,实现了低温下无需外加强磁场就能观测到的量子霍尔效应。为了体现区别,这种新的现象被称为量子反常霍尔效应。



动图6:拓扑绝缘体中的量子反常霍尔效应,


来源:中国科普博览


量子霍尔效应提供了一种实现超高性能电子器件的可能途径,能够极大降低电路的发热,提高开关频率和运行速度。而中国科学家率先发现的反常量子霍尔效应,进一步摆脱了强磁场的桎梏,有条件实现器件的小型化。如果能进一步解决相关的技术障碍,提高可用温度,有希望在未来进一步拓展应用场景。


普通导体中的电子运动:


在普通导体中,电子的运动杂乱无章,不断发生碰撞。当在两端加上电极之后,电子就会形成一个横向漂移的稳定电流。


一定条件下(加上外磁场,或极低温),普通导体中的量子霍尔效应


如果在垂直于电流方向加上外磁场,平面材料里的电子由于受到洛伦兹力的作用,会在导体一边积累电荷,最终会达到平衡形成稳定的霍尔电压。


当外场足够强,温度足够低时,导体中间的电子会在原地打圈,然而会在边界上形成不易被外界干扰的导电通道,即量子霍尔效应。


一定条件下(加上外磁场,或极低温),不普通导体(拓扑绝缘体)中的量子反常霍尔效应


最近的"明星"材料拓扑绝缘体,其本身就是内部绝缘,表面导电的拓扑材料,这些表面导电通道不受表面形貌,非磁杂质等的影响,所以是一个很好的一维导体。


如果在其中掺入磁性原子形成长程铁磁序,这样无需外加磁场,从而形成稳定的基本没有耗散的反常的量子霍尔效应,它的应用将会为半导体工业带来又一次革命。


 



文章来源:材料科学与工程公众号




1131
0
0
0
关于作者
相关文章
  • 基于扩散模型的DNA-Diffusion——用生成式AI框架设计合成调控元 ...
    合成调控元件(如启动子、增强子和顺式调控序列)是精确控制基因表达的核心组件,但其设计长期依 ...
    了解详情 
  • GCN-Transformer架构MoleculeFormer:多尺度特征融合的分子性质 ...
    2025年11月25日,复旦大学韩涟漪、夏晶晶团队在《Communications Biology》期刊上发表研究论文, ...
    了解详情 
  • 页岩孔隙“显微镜”升级:生成对抗网络让油气储层观测精度提升8 ...
    中国石油大学(华东)团队在《石油勘探与开发》2025年5期发表《 基于生成对抗网络的页岩孔隙结构 ...
    了解详情 
  • 稀疏去噪模型salad:高效灵活的超长链蛋白质结构生成新方法 ...
    2025年发表于《Nature Machine Intelligence》的研究,提出稀疏去噪模型salad(sparse all-atom ...
    了解详情 
  • LSTM+KNN的金融时间序列预测
     今天的案例是:STM-KNN融合模型在金融时间序列预测中的应用。当你在预测股票价格的变化。 ...
    了解详情 
联系我们
二维码
在本版发帖返回顶部
快速回复 返回顶部 返回列表
玻色有奖小调研
填写问卷,将免费赠送您5个100bit真机配额
(单选) 您是从哪个渠道得知我们的?*
您是从哪个社交媒体得知我们的?*
您是通过哪个学校的校园宣讲得知我们的呢?
取消

提交成功

真机配额已发放到您的账户,可前往【云平台】查看

量子AI开发者认证

考核目标

开发者能够成功搭建Kaiwu-PyTorch-Plugin项目基础环境,并成功运行示例代码,根据示例提示,输出指定的值并填写至相应的输入框中。

通过奖励

5个一年效期的1000量子比特真机配额

专属「量子AI开发者」社区认证标识

开发者权益

每月固定权益:5个550量子比特真机配额
前往考核

第一步

按照README提示成功安装Kaiwu-PyTorch-Plugin库环境依赖
前往GitHub

第二步

运行 community-assessment 分支下的 run_rbm.py 代码示例

第三步

理解示例代码,手动打印并填写如下数值:

正相采样的状态

负相采样的状态

正相的能量值

负相的能量值

*

提交答案

开发者权益

每月固定权益:5个550量子比特的真机配额

恭喜您完成考核

您将获得量子AI开发者认证标识及考核奖励

1000 bit*5

配额

Quantum AI Developer Certification

Assessment Objectives

Developers should successfully set up the basic environment for the Kaiwu-PyTorch-Plugin project, run the QBM-VAE sample code, and calculate the correct FID value based on the random seed value provided by the system.

Pass Rewards

10 quotas for 550-qubit real quantum machines with a one-year validity period

Exclusive "Quantum AI Developer" Community Certification Badge

Developer Benefits

Fixed Monthly Benefits: 5 quotas for 550-qubit real quantum machines
Proceed to Assessment

Step 1

Install the environment dependencies for the Kaiwu-PyTorch-Plugin library according to the README instructions
Go to GitHub

Step 2

Replace the Seed Value

Your seed value is

Step 3

Enter the FID Value You Calculated

*

Submit Answer

Developer Benefits

Fixed Monthly Benefits: 5 quotas of 550-qubit real machines

Congratulations on Completing the Assessment

You will receive the Quantum AI Developer Certification Badge and Assessment Rewards

550bit*10

Quotas