0
分享
量子计算和量子启发计算可能成为解答复杂优化问题的新前沿,而经典计算机在历史上是无法解决这些问题的。
当今最快的计算机可能需要数千年才能完成高度复杂的计算,包括涉及许多变量的组合优化问题;研究人员正在努力将解决这些问题所需的时间缩短到几秒钟。
纵观全球科研团队,中国、日本(例如NTT研究所、东京工业大学和东京大学等)、美国(加州理工学院、哈佛大学、麻省理工学院、圣母大学、斯坦福大学、康奈尔大学、密歇根大学等)各界团队一直在探索利用量子和经典计算混合原理的尖端计算系统,也有研究团队认为相干伊辛机(CIM)是迄今为止最有前途的下一代解决方案。
离散变量和连续变量的优化问题(其中一些属于复杂性理论中的NP-hard或NP-complete类)在许多重要领域无处不在,包括操作和调度、药物发现、无线通信、金融、集成电路设计、压缩传感和机器学习等。
尽管算法和数字计算机技术都在飞速发展,但即使是实际中出现的中等规模的NP-hard或NP-complete问题,在现代数字计算机上也很难解决。
另一种备受当代人关注的方法是绝热量子计算(AQC)和量子退火(QA),当下,复杂的AQC/QA设备已在开发之中,但在量子比特之间提供密集连接仍是一大挑战,对AQC/QA系统的效率有严重影响。
简并光学参量振荡器(degenerate optical parametric oscillators,DOPO)网络是一种可供选择的物理系统,它具有非常规的运行机制,可用于解决伊辛问题以及许多其他组合优化问题。
相干伊辛机(CIM)是一个光学参量振荡器 (OPO) 网络,通过编程来解决映射到伊辛模型的问题。伊辛模型是磁性系统的数学抽象,由相互竞争的基本粒子自旋或角动量组成。
这其中,OPO是一种相干光源,与激光器类似,基于光学谐振器内的参量放大。有了伊辛模型,优化问题就可以映射到OPO上,OPO就可以找到最低能量的自旋配置,从而找到问题的解决方案。
与传统计算机相比,CIM有两个明显的优势:速度和能效。
CIM中使用的光学和激光使其在带宽方面具有很大的优势:约200THz ,而传统计算机的带宽仅为几千兆赫,从而加快了通信和计算速度。与电路相比,光路还可以同时进行计算,同时最大限度地降低能耗。
具有上图(a)所示特征输入输出关系的非线性器件代表了经典神经网络(CNN)中神经元的典型增益函数。当输入信号电平较弱时,神经元会线性放大该输入信号,从而补偿网络中不可避免的线性损耗。然而,当输入信号电平超过某个阈值时,输出信号电平就会被箝制在一个恒定值上。
这种非线性的输入输出关系对于CNN找到一个稳定的工作点至关重要,而这个稳定的工作点就体现了给定数学问题的解决方案。在这一模型中,每个神经元的状态都由一个连续变量表示,它服从由以下因素控制的连续时间演化:
式中的第一项表示线性损耗,第二项表示自反馈,其非线性增益函数f如本节图(a)所示。需要注意的是,时间是由神经元激励的衰减率归一化的。
第三项表示神经元之间的相互耦合,相互作用势V实现了给定的数学问题。要强调的是,由于第三项的梯度下降特性,神经元之间可以同时相互耦合,而不会带来不必要的不稳定性或振荡。
非线性增益函数f通常用作第三项相互耦合的耦合系数,而不是第二项自反馈。最后,第四项gi表示与神经元激励衰减和非线性增益相关的噪声驱动力。
即使神经网络受到内部和/或外部噪声的随机驱动,每个神经元在给定时间仍具有不可预测但确定的值ai。当热噪声远大于量子零点噪声(即kBT)时,这是神经网络的正确物理图景。
量子神经元(或量子神经网络)具有以下三个特性,因此它有别于经典神经元:
1)量子神经元处于不同神经激励的叠加态,因此可以实现量子并行搜索(quantum parallel search);
2)量子神经元网络在相变临界点通过相关和集体对称性破缺做出决定,以达到最终的计算结果;
3)量子神经元网络通过玻色终态刺激将上述量子解放大为经典信号。
与经典神经网络相比,基于DOPO的量子神经网络最重要的优势在于,每个神经元(DOPO)都是在不同同相振幅特征态(即挤压真空态)的线性叠加中制备的,因此可以在整个优化过程中实现量子并行搜索。
——这是CIM至关重要的计算资源。
我们在此重点讨论双光子发射过程的简并光学参量放大器(DOPA)。
一种特殊的设备由一个置于光腔中的二阶非线性晶体组成。非线性晶体吸收一个频率为2ωs的泵浦光子,同时发射两个频率为ωs的信号光子。相关的相互作用哈密顿量表示为:
由于量子干涉,如果一个DOPA由外部真空状态(零点波动)输入,零点波动会分别沿X轴和P轴放大和缩小。由此产生的状态被称为挤压真空态,它是最小不确定性波包,满足海森堡不确定性原理的相等原则,与真空态一样。
完善个人信息
可获得CPQC-550比特真机配额奖励
完善渠道来源
可获得CPQC-100比特真机配额奖励
提交成功
真机配额已发放到您的账户,可前往【云平台】查看