严格地说,我们要解决的问题是带时间约束和载重约束的VRP问题。这属于VRP问题中较为简单的一种类型。下文提到的“VRP问题”都是指这种类型的VRP问题。
用穷举法求解VRP问题
为了直观地体会VRP问题的难度,这里介绍一下如何用穷举法求解VRP问题。
穷举法的基本思路是:遍历所有可能的配送方案,从中选取得分最高的方案(得分计算方法见上一节)。理论上,穷举法可以找到问题的最优解。
为便于叙述,我们将所有配送点编号为 1 到 n ,将所有车辆编号为 1 到 m 。
配送方案的表示
我们用一个长度为 n + m − 1的整数数组表示(编码)一个配送方案。该数组包含 1到 n 的全排列和 m − 1 个 0。这 m − 1 个 0 将 1到 n 的全排列分成了 m 段,从左到右第 i 段表示第 i 辆车的配送路线(具体含义请见下面例子)。注意:可能有的 0 是相邻的,或者位于数组两端,这表示某些编号的车不参与配送。
例1:
2 1 3 0 9 4 7 6 0 8 5
上面的方案表明:第一辆车服务编号为 2 , 1 , 3 的配送点,且顺序为 2 → 1 → 3 ;第二辆车服务编号为 9 , 4 , 7 , 6 的配送点,且顺序为 9 → 4 → 7 → 6 ,依此类推。
例2:
6 8 7 9 0 5 4 1 2 3 0
该方案只用到了两辆车,第一辆车服务 6 , 8 , 7 , 9 号配送点,第二辆车服务 5 , 4 , 1 , 2 , 3 号配送点,第三辆车不参与配送。
例3:
5 4 6 8 0 0 3 1 2 7 9
该方案只用到了两辆车,第一辆车服务 5 , 4 , 6 , 8 号配送点,第二辆车不参与配送,第三辆车服务 3 , 1 , 2 , 7 , 9 号配送点。
显然,这种编码方式可以表示所有可能的配送方案。
注意,由于载重量和里程约束,以上方法产生的一些方案是不合法的,这里假定程序会在运行时判断方案的合法性。
方案总数的计算
理论上,有了以上表示配送方案的方法,我们就可以写出穷举法的求解程序了。关键步骤如下:
1.遍历 1 - n 这 n 个数和 m − 1 个 0 组成的序列的全排列。
2.计算出每种排列对应的方案的得分,从而得到得分最高的方案。
事实上,我们不会写这个程序,因为即使对于 n = 20,m = 5 这样的小规模数据,程序要枚举的方案数也是天文数字,以下是具体的计算。
n+m−1 个数的排列共有 ( n + m − 1 ) ! 种,其中有 m − 1个重复的 0 ,因此所有可能的方案数如下:
当 n = 20 ,m = 5 时,方案数为:
假设我们的计算机一秒钟可以遍历10 9种方案(根据普通家用计算机的运行速度),那么要遍历完以上所有的方案需要的时间为:
也就是说,即使 n 取很小的数值,穷举法的运行时间也是不可接受的。这种现象称为组合爆炸。
其它穷举法
除了以上方法,VRP问题的穷举法还有如下几种:分支界定法、割平面法、网络流算法、动态规划法等。这些算法对传统的穷举法进行了一些效率上的优化,但还是存在组合爆炸问题。
启发式算法简介
由于组合爆炸现象,即使在问题规模较小时,VRP问题的解空间也十分庞大(解空间就是所有可能方案的集合)。由于穷举法必须要枚举整个解空间才能得出结果,因此利用穷举法来求解VRP问题是十分低效的,即使能够在效率上进行一些改进,也远远达不到当前计算机运算速度的数量级。于是,人们开始思考,是否存在一种算法,能够枚举部分解空间就能得到问题的解呢?显然,如果这种算法存在,那么它不能保证找到最优解。因此,人们将重心转移到如何寻找较优解上。于是,出现了一系列启发式算法。
启发式算法
启发式算法,是一种不同于穷举法的搜索算法。它的主要特点如下:
● 启发式算法不会枚举所有的方案,而是仅仅考察少量的方案就得出结果
● 启发式算法不保证找到最优解,很多时候只能找到较优解
启发式算法在运行时,会根据前面枚举的结果,采用某种策略来选择下一次枚举的方案,使得下一次方案尽量更接近问题的最优解,并在迭代一定次数后停止。由于启发式算法不用枚举整个解空间,因此效率比较高,但是启发式算法采用的搜索策略会对结果的质量产生很大的影响,而搜索策略的制定也主要依靠人的经验。
启发式算法之所以能工作,是由于以下原理:
上一次的搜索结果能为下一次的搜索方向提供有用的信息。
几乎所有启发式算法都使用了以上原理来制定搜索策略。下面介绍遗传算法的时候,将对这个原理有更深入的了解。
VRP问题中的启发式求解算法
目前有许多种启发式算法可以解决VRP问题:C-W节约法、最邻近法、最近插入法、粒子群算法、模拟退火算法、遗传算法……等等。
这些算法的特点各不相同,求解质量也有着很大的差别。效果相对来说较好的算法有粒子群算法、模拟退火算法和遗传算法。
由于遗传算法原理和实现都相对比较简单,效果也比较好,因此我们主要研究用遗传算法求解VRP问题。
遗传算法简介
遗传算法(Genetic Algorithm,GA)是一种通过模拟生物进化过程来求解最优化问题的启发式算法。遗传算法的主要理论依据是达尔文的自然选择学说。遗传算法是一种十分通用的搜索算法,可以用来求解多种问题,且效果还不错。
基本概念
首先介绍遗传算法中的几个概念:
基因:一个单独的、不可分割的遗传因子。每个基因都决定着个体某一方面的性状。
染色体:一组不同基因的线性排列。每条染色体上有多个不同的基因。
个体:一个独立的生物体。每个个体都有一条染色体。事实上,很多时候可以用染色体来代表个体。
种群:个体的集合。种群中的个体一般具有相同长度的染色体,但是染色体上的基因可能不同。
适应度:个体对环境的适应程度。适应度越高,个体对当前环境的适应能力越好,存活的概率也越大。
繁殖:旧个体产生新个体的过程。繁殖过程一般包含两个个体的染色体的变异、重组操作(下面会介绍这两种操作)。新个体仍然属于父代种群。
选择:随机选择一定数量的种群中的个体,只有被选择的个体保留到下一代,满足适应度越高的个体被选择的概率越大。
进化:一个种群经过一轮选择、繁殖操作后,会变成一个新的种群,新种群的个体数量与原种群相同。这个过程被称为“进化了一代”。
自然选择学说
自然选择学说是由达尔文提出的关于生物进化机理的一种学说,讲述的是“物竞天择,适者生存”的自然原理,生物体通过自然选择、基因突变和遗传等规律进化出适应环境变化的优良品种。在环境压力下,适应度高的个体得以保存下来,从而影响整个种群的进化方向。
生物的进化,本质上是基因的优胜劣汰过程。在每轮自然选择中,优良的基因片段有更大的几率保留下来,而劣势基因片段则大概率减少或消失。久而久之,优良基因会在种群中占据主导地位,而劣势基因会逐渐销声匿迹。
自然选择最重要的阶段是遗传变异,这个阶段是产生种群多样性的唯一阶段。遗传变异一般是通过基因突变和基因重组实现的。
● 基因突变:某基因随机变成了另一个完全不同的基因。基因突变可以产生新的基因,新基因表达的性状可能是有益的,也可能是有害的(大多数情况下是有害的)。基因突变是产生种群多样性的主要原因。基因突变发生的概率很低。
● 基因重组:两条染色体的部分片段发生了随机交换。基因重组不会产生新的基因,但是可能将父代的一些优良基因片段集中到子代基因上(当然,也有可能将父代不好的基因片段集中到子代基因上)。基因重组发生的概率也很低,但是比基因突变的概率高。
遗传算法基本流程
遗传算法忠实地复原了生物进化的过程。以下是遗传算法的基本流程:
该流程适用于所有遗传算法,但是对于具体问题应用遗传算法时,需要根据具体问题设计算法中各种遗传操作。
用遗传算法求解VRP问题
遗传算法求解的关键是设计个体的存储结构和各种遗传操作的实现。这些细节不仅决定程序实现的难度,也影响着算法最终的执行效果。
为便于叙述,我们将所有配送点编号为 1 到 n ,将所有车辆编号为 1 到 m 。
个体的编码
为方便起见,个体的编码采用与穷举法中相同的编码方案。这种方案简单直观,没有冗余信息,而且可以简化接下来的变异操作,提高程序的运行效率。
个体的生成
利用如下算法随机生成一个个体:
1.随机生成 1 到 n 的全排列。
2.在排列中随机插入 m − 1 个 0 。
注意:由于载重量和里程的约束,以上算法生成的个体可能是不合法的,因此在第二步分割时需要根据当前车辆的里程和载重进行合理划分,以保证所有生成的个体都是合法的。
初始种群的生成
利用以上算法随机生成 1000 个个体作为初始种群。
适应度计算
个体的适应度根据以下公式计算:
其中score 为问题分析中介绍过的得分公式。
选择操作
按照如下步骤对种群进行选择:
1.对种群中的所有个体按照适应度从大到小排序。
2.选择前 50 % 的个体(即适应度较大的 50 % 个体)保留到下一代。
执行选择操作后,种群中的个体数减少为原来的一半,后面会通过繁殖操作使种群大小恢复为原来的水平。
变异操作
按照如下步骤对个体进行变异:
1. 随机选定个体数组中的两个元素。
2. 交换两个元素的值。
3. 若变异后的个体不合法,则变异失败,撤销变异操作(即保持个体不变)。
例:
2 1 3 0 9 4 7 6 0 8 5
该个体变异后可能产生的新个体如下:
2 1 3 0 7 4 9 6 0 8 5
其中 9 和 7 交换了位置,改变了第二辆车配送的顺序。
还可能产生如下的变异:
2 4 3 7 9 1 0 6 0 8 5
这次变异交换了 0 的位置,产生了一个新划分。
显然,若个体能成功变异,则经过变异后的个体还是合法的。这种变异算法能够很好地保留父代的大部分特征,同时也有一定的机率产生较大的改变(如上例中的第二种变异情况),可以大大增强种群多样性,提高算法搜索的效果。
交叉操作
如果用传统的交叉算法(即随机交换两条染色体的片段)对个体进行交叉操作,则交叉后产生的新个体不一定是合法的,需要进行调整。为简单起见,这里不对个体进行交叉操作,仅仅通过变异操作产生新个体。
繁殖操作
选择操作后,种群大小变为原来的一半。每次在留下的个体中随机选取一个进行变异操作(若变异失败,则重新选择一个个体),并将产生的新个体插入到种群中,直到种群恢复原来的大小。
算法结束条件
程序会记录每次进化过程中个体的最大适应度。若最大适应度持续 1000 代都无变化,则结束算法,并输出最大适应度对应的方案。
算法执行效果展示
利用以上遗传算法实现的程序能够在较短时间内求解一定规模的VRP问题,且求解质量还不错。以下给出不同规模的VRP问题的求解结果和相关数据。
地图中的红点P表示配送中心,蓝点表示配送点,蓝点旁边的数字表示需求量。
下面是各个问题的相关参数:
注:数据中的时间、重量和里程经过单位换算,不代表实际大小,只表示相对大小。
10个配送点
20个配送点
30个配送点
40个配送点
50个配送点
————————————————
本文转载自CSDN博主:byx2000
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/baiyuxuan123123/article/details/114818224